Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Aquat Toxicol ; 275: 107078, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241468

RESUMO

In recent years, there is a great concern about the potential adverse effects of carbon nanotubes (CNTs) on the aquatic systems due to their increasingly extensive application. In this study, juvenile Cyprinus carpio were exposed to multi-walled CNTs (MWCNTs) at concentrations of 0, 0.25, and 2.5 mg L-1 for 28 days. Then, oxidative stress indicators and metabolite profile of the livers were assessed. Results showed the significant increase of malondialdehyde (MDA) content and decrease of glutathione (GSH) activities in fish treated with 2.5 mg L-1 MWCNTs. LC-MS untargeted metabolomics demonstrated that 406 and 274 metabolites in fish treated with 2.5 mg L-1 MWCNTs were significantly up- and down-regulated, respectively. KEGG functional annotation analysis showed the disturbance of amino acid metabolism, lipid metabolism, and nucleotide metabolism. In addition, ferroptosis signaling pathway was detected. Therefore, iron content analysis and quantitative real-time RT-PCR assay were performed furtherly to validate the contribution of ferroptosis to MWCNTs-induced hepatotoxicity. The iron content increased significantly and the mRNA levels of ferroptosis-related genes including STEAP3, ACSL4, NCOA4, TFR1, NRF2, SLC3A2, SLC7A11, GPX4, and FPN1 were also obviously changed. Taken together, our study suggested that MWCNTs exposure-induced ferroptosis were associated with iron overload and lipid peroxidation via NRF2/SLC7A11/GSH/GPX4 axis. Our findings provide essential information to understand the mechanism of CNTs-induced hepatotoxicity in fish and explore potential biomarkers.


Assuntos
Carpas , Ferroptose , Fígado , Metabolômica , Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Ferroptose/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Nanotubos de Carbono/toxicidade , Cromatografia Líquida , Estresse Oxidativo/efeitos dos fármacos , Ferro/metabolismo , Glutationa/metabolismo , Malondialdeído/metabolismo , Espectrometria de Massa com Cromatografia Líquida
2.
J Med Chem ; 66(19): 13568-13586, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37751283

RESUMO

Extracellular signal-regulated kinase 5 (ERK5) is recognized as a key member of the mitogen-activated protein kinase family and is involved in tumor growth, migration, and angiogenesis. However, the results of ERK5 inhibition in multiple studies are controversial, and a highly specific ERK5-targeting agent is required to confirm physiological functions. Using proteolysis-targeting chimera technology, we designed the selective ERK5 degrader PPM-3 and examined its biological effect on cancer cells. Interestingly, the selective degradation of ERK5 with PPM-3 did not influence tumor cell growth directly. Based on proteomics analysis, the ERK5 deletion may be associated with tumor immunity. PPM-3 influences tumor development by affecting the differentiation of macrophages. Therefore, PPM-3 is an effective small-molecule tool for studying ERK5 and a promising immunotherapy drug candidate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA