Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(6): 157, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819475

RESUMO

KEY MESSAGE: CmMYB308 was identified as a key regulator in chrysanthemum flower color variation from purple to pink by conducting transcriptome and metabolome analysis. CmMYB308 can inhibit anthocyanin biosynthesis by suppressing the expression of CmPAL, CmC4H, and Cm4CL. Flower color variation is a widespread natural occurrence that plays a significant role in floral breeding. We discovered a variation in the flower of the chrysanthemum cultivar 'Dante Purple' (abbreviated as 'DP'), where the flower color shifted from purple to pink. We successfully propagated these pink flowers through tissue culture and designated them as DPM. By conducting transcriptome and metabolome analysis, we identified a reduction in the expression of critical genes involved in anthocyanin biosynthesis-CmPAL, CmC4H, and Cm4CL-in the DPM. This downregulation led to an accumulation of phenylalanine and cinnamic acid within the general phenylpropanoid pathway (GPP), which prevented their conversion into cyanidin and cyanidin 3-glucoside. As a result, the flowers turned pink. Additional transformation and biochemical experiments confirmed that the upregulation of CmMYB308 gene expression in the DPM directly suppressed CmPAL-1 and CmC4H genes, which indirectly affected Cm4CL-3 expression and ultimately inhibited anthocyanin biosynthesis in the DPM. This study offers a preliminary insight into the molecular mechanism underlying chrysanthemum flower color mutation, paving the way for genetic improvements in chrysanthemum flower color breeding.


Assuntos
Antocianinas , Chrysanthemum , Flores , Regulação da Expressão Gênica de Plantas , Pigmentação , Proteínas de Plantas , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antocianinas/metabolismo , Pigmentação/genética , Transcriptoma/genética , Metabolômica/métodos , Metaboloma/genética , Perfilação da Expressão Gênica , Cor , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
BMC Biol ; 21(1): 211, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37807042

RESUMO

BACKGROUND: Anthocyanin is a class of important secondary metabolites that determines colorful petals in chrysanthemum, a famous cut flower. 'Arctic Queen' is a white chrysanthemum cultivar that does not accumulate anthocyanin during the flowering stage. During the post-flowering stage, the petals of 'Arctic Queen' accumulate anthocyanin and turn red. However, the molecular mechanism underlying this flower color change remains unclear. RESULTS: In this study, by using transcriptome analysis, we identified CmNAC25 as a candidate gene promoting anthocyanin accumulation in the post-flowering stage of 'Arctic Queen'. CmNAC25 is directly bound to the promoter of CmMYB6, a core member of the MBW protein complex that promotes anthocyanin biosynthesis in chrysanthemum, to activate its expression. CmNAC25 also directly activates the promoter of CmDFR, which encodes the key enzyme in anthocyanin biosynthesis. CmNAC25 was highly expressed during the post-flowering stage, while the expression level of CmMYB#7, a known R3 MYB transcription factor interfering with the formation of the CmMYB6-CmbHLH2 complex, significantly decreased. Genetic transformation of both chrysanthemum and Nicotiana tabacum verified that CmNAC25 was a positive regulator of anthocyanin biosynthesis. Another two cultivars that turned red during the post-flowering stages also demonstrated a similar mechanism. CONCLUSIONS: Altogether, our data revealed that CmNAC25 positively regulates anthocyanin biosynthesis in chrysanthemum petals during the post-flowering stages by directly activating CmMYB6 and CmDFR. Our results thus revealed a crucial role of CmNAC25 in regulating flower color change during petal senescence and provided a target gene for molecular design breeding of flower color in chrysanthemum.


Assuntos
Antocianinas , Chrysanthemum , Antocianinas/análise , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas
3.
Int J Mol Sci ; 25(19)2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39409047

RESUMO

Osmanthus fragrans, a native to China, is renowned as a highly popular gardening plant. However, this plant faces significant challenges from drought stress, which can adversely affect its flowering. In this study, we found that the plasma membrane-localized gene OfPIP2 exhibited a substantial upregulation during the flowering stages and in response to drought stress. GUS staining has illustrated that the OfPIP2 promoter can drive GUS activity under drought conditions. The overexpression of OfPIP2 was found to enhance petal size by modulating epidermal cell dimensions in Petunia and tobacco. Moreover, this overexpression also bolstered drought tolerance, as evidenced by a reduction in stomatal aperture in both species. Furthermore, yeast one-hybrid (Y1H) and dual-luciferase (Dual-LUC) assays have indicated that the transcription factor OfMYB28 directly binds to the OfPIP2 promoter, thereby regulating its expression. Together, we speculated that a module of OfMYB28-OfPIP2 was not only involved in the enhancement of petal size but also conferred the improvement of drought tolerance in O. fragrans. These results contribute valuable insights into the molecular function of the OfPIP2 gene and lay a foundation for molecular breeding strategies in O. fragrans.


Assuntos
Secas , Flores , Regulação da Expressão Gênica de Plantas , Oleaceae , Proteínas de Plantas , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oleaceae/genética , Oleaceae/metabolismo , Regiões Promotoras Genéticas , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Membrana Celular/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Resistência à Seca
4.
Medicina (Kaunas) ; 60(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39202552

RESUMO

Background and Objectives: Genomic studies have identified several SNP loci associated with schizophrenia in East Asian populations. Environmental factors, particularly urbanization, play a significant role in schizophrenia development. This study aimed to identify schizophrenia susceptibility loci and characterize their biological functions and molecular pathways in Taiwanese urban Han individuals. Materials and Methods: Participants with schizophrenia were recruited from the Taiwan Precision Medicine Initiative at Tri-Service General Hospital. Genotype-phenotype association analysis was performed, with significant variants annotated and analyzed for functional relevance. Results: A total of 137 schizophrenia patients and 26,129 controls were enrolled. Ten significant variants (p < 1 × 10-5) and 15 expressed genes were identified, including rs1010840 (SOWAHC and RGPD6), rs11083963 (TRPM4), rs11619878 (LINC00355 and LINC01052), rs117010638 (AGBL1 and MIR548AP), rs1170702 (LINC01680 and LINC01720), rs12028521 (KAZN and PRDM2), rs12859097 (DMD), rs1556812 (ATP11A), rs78144262 (LINC00977), and rs9997349 (ENPEP). These variants and associated genes are involved in immune response, blood pressure regulation, muscle function, and the cytoskeleton. Conclusions: Identified variants and associated genes suggest a potential genetic predisposition to schizophrenia in the Taiwanese urban Han population, highlighting the importance of potential comorbidities, considering population-specific genetic and environmental interactions.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Estudos de Associação Genética/métodos , Esquizofrenia/genética , Taiwan/epidemiologia , População Urbana/estatística & dados numéricos , População do Leste Asiático/genética
5.
Plant Physiol ; 190(2): 1134-1152, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35876821

RESUMO

Light is essential to plant survival and elicits a wide range of plant developmental and physiological responses under different light conditions. A low red-to-far red (R/FR) light ratio induces shade-avoidance responses, including decreased anthocyanin accumulation, whereas a high R/FR light ratio promotes anthocyanin biosynthesis. However, the detailed molecular mechanism underpinning how different R/FR light ratios regulate anthocyanin homeostasis remains elusive, especially in non-model species. Here, we demonstrate that a low R/FR light ratio induced the expression of CmMYB4, which suppressed the anthocyanin activator complex CmMYB6-CmbHLH2, leading to the reduction of anthocyanin accumulation in Chrysanthemum (Chrysanthemum morifolium) petals. Specifically, CmMYB4 recruited the corepressor CmTPL (TOPLESS) to directly bind the CmbHLH2 promoter and suppressed its transcription by impairing histone H3 acetylation. Moreover, the low R/FR light ratio inhibited the PHYTOCHROME INTERACTING FACTOR family transcription factor CmbHLH16, which can competitively bind to CmMYB4 and destabilize the CmMYB4-CmTPL protein complex. Under the high R/FR light ratio, CmbHLH16 was upregulated, which impeded the formation of the CmMYB4-CmTPL complex and released the suppression of CmbHLH2, thus promoting anthocyanin accumulation in Chrysanthemum petals. Our findings reveal a mechanism by which different R/FR light ratios fine-tune anthocyanin homeostasis in flower petals.


Assuntos
Chrysanthemum , Fitocromo , Antocianinas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Proteínas Correpressoras/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Homeostase , Luz , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nano Lett ; 22(7): 2978-2987, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35302770

RESUMO

Toll-like receptor (TLR) agonists are potent immune-stimulators that hold great potential in vaccine adjuvants as well as cancer immunotherapy. However, TLR agonists in free form are prone to be eliminated quickly by the circulatory system and cause systemic inflammation side effects. It remains a challenge to achieve precise release of TLR7/8 agonist in the native form at the receptor site in the endosomal compartments while keeping stable encapsulation and inactive in nontarget environment. Here, we report a pH-/enzyme-responsive TLR7/8 agonist-conjugated nanovaccine (TNV), which responds intelligently to the acidic environment and cathepsin B in the endosome, precisely releases TLR7/8 agonist to activate its receptor signaling at the endosomal membrane, stimulates DCs maturation, and provokes specific cellular immunity. In vivo experiments demonstrate outstanding prophylactic and therapeutic efficacy of TNV in mouse melanoma and colon cancer. The endosome-targeted responsive nanoparticle strategy provides a potential delivery toolbox of adjuvants to advance the development of tumor nanovaccines.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Vacinas Anticâncer/uso terapêutico , Células Dendríticas , Endossomos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Receptores Toll-Like , Vacinação
7.
BMC Genomics ; 23(1): 418, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659179

RESUMO

BACKGROUND: Temperature is involved in the regulation of carotenoid accumulation in many plants. The floral color of sweet osmanthus (Osmanthus fragrans Lour.) which is mainly contributed by carotenoid content, is affected by temperature in autumn. However, the mechanism remains unknown. Here, to reveal how temperature regulates the floral color of sweet osmanthus, potted sweet osmanthus 'Jinqiu Gui' were treated by different temperatures (15 °C, 19 °C or 32 °C). The floral color, carotenoid content, and the expression level of carotenoid-related genes in petals of sweet osmanthus 'Jinqiu Gui' under different temperature treatments were investigated. RESULTS: Compared to the control (19 °C), high temperature (32 °C) changed the floral color from yellow to yellowish-white with higher lightness (L*) value and lower redness (a*) value, while low temperature (15 °C) turned the floral color from yellow to pale orange with decreased L* value and increased a* value. Total carotenoid content and the content of individual carotenoids (α-carotene, ß-carotene, α-cryptoxanthin, ß-cryptoxanthin, lutein and zeaxanthin) were inhibited by high temperature, but were enhanced by low temperature. Lower carotenoid accumulation under high temperature was probably attributed to transcriptional down-regulation of the biosynthesis gene OfPSY1, OfZ-ISO1 and OfLCYB1, and up-regulation of degradation genes OfNCED3, OfCCD1-1, OfCCD1-2, and OfCCD4-1. Up-regulation of OfLCYB1, and down-regulation of OfNCED3 and OfCCD4-1 were predicted to be involved in low-temperature-regulated carotenoid accumulation. Luciferase assays showed that the promoter activity of OfLCYB1 was activated by low temperature, and repressed by high temperature. However, the promoter activity of OfCCD4-1 was repressed by low temperature, and activated by high temperature. CONCLUSIONS: Our study revealed that high temperature suppressed the floral coloration by repressing the expression of carotenoid biosynthesis genes, and activating the expression of carotenoid degradation genes. However, the relative low temperature had opposite effects on floral coloration and carotenoid biosynthesis in sweet osmanthus. These results will help reveal the regulatory mechanism of temperature on carotenoid accumulation in the petals of sweet osmanthus.


Assuntos
Citrus sinensis , Oleaceae , Carotenoides/metabolismo , Citrus sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Oleaceae/genética , Oleaceae/metabolismo , Temperatura
8.
Plant Mol Biol ; 108(1-2): 51-63, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34714494

RESUMO

KEY MESSAGE: An R2R3-MYB transcription factor, CmMYB9a, activates floral coloration in chrysanthemum by positively regulating CmCHS, CmDFR and CmFNS, but inhibiting the expression of CmFLS. Chrysanthemum is one of the most popular ornamental plants worldwide. Flavonoids, such as anthocyanins, flavones, and flavonols, are important secondary metabolites for coloration and are involved in many biological processes in plants, like petunia, snapdragon, Gerbera hybrida, as well as chrysanthemum. However, the metabolic regulation of flavonoids contributing to chrysanthemum floral coloration remains largely unexplored. Here, an R2R3-MYB transcription factor, CmMYB9a, was found to be involved in flavonoid biosynthesis. Phylogenetic analysis and amino acid sequence analysis suggested that CmMYB9a belonged to subgroup 7. Transient overexpression of CmMYB9a in flowers of chrysanthemum cultivar 'Anastasia Pink' upregulated the anthocyanin-related and flavone-related genes and downregulated CmFLS, which led to the accumulation of anthocyanins and flavones. We further demonstrated that CmMYB9a independently activates the expression of CmCHS, CmDFR and CmFNS, but inhibits the expression of CmFLS. Overexpression of CmMYB9a in tobacco resulted in increased anthocyanins and decreased flavonols in the petals by upregulating NtDFR and downregulating NtFLS. These results suggest that CmMYB9a facilitates metabolic flux into anthocyanin and flavone biosynthesis. Taken together, this study functionally characterizes the role of CmMYB9a in regulating the branched pathways of flavonoids in chrysanthemum flowers.


Assuntos
Antocianinas/biossíntese , Chrysanthemum/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Chrysanthemum/genética , Cor , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Nicotiana , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
9.
Eur J Nucl Med Mol Imaging ; 49(8): 2693-2704, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35235005

RESUMO

PURPOSE: Radioligand therapy (RLT) targeting prostate-specific membrane antigen (PSMA) is emerging as an effective treatment option for metastatic castration-resistant prostate cancer (mCRPC). An imaging-based method to quantify early treatment responses can help to understand and optimize RLT. METHODS: We developed a self-triggered probe 2 targeting the colocalization of PSMA and caspase-3 for fluorescence imaging of RLT-induced apoptosis. RESULTS: The probe binds to PSMA potently with a Ki of 4.12 nM, and its fluorescence can be effectively switched on by caspase-3 with a Km of 67.62 µM. Cellular and in vivo studies demonstrated its specificity for imaging radiation-induced caspase-3 upregulation in prostate cancer. To identify the detection limit of our method, we showed that probe 2 could achieve 1.79 times fluorescence enhancement in response to 177Lu-RLT in a medium PSMA-expressing 22Rv1 xenograft model. CONCLUSION: Probe 2 can potently bind to PSMA, and the fluorescence signal can be sensitively switched on by caspase-3 both in vitro and in vivo. This method may provide an effective tool to investigate and optimize PSMA-RLT.


Assuntos
Lutécio , Neoplasias de Próstata Resistentes à Castração , Antígenos de Superfície , Caspase 3 , Dipeptídeos , Glutamato Carboxipeptidase II , Compostos Heterocíclicos com 1 Anel , Humanos , Lutécio/uso terapêutico , Masculino , Imagem Óptica , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem , Neoplasias de Próstata Resistentes à Castração/radioterapia , Resultado do Tratamento
10.
Nano Lett ; 21(10): 4371-4380, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33984236

RESUMO

Anticancer immunotherapy is hampered by poor immunogenicity and a profoundly immunosuppressive microenvironment in solid tumors and lymph nodes. Herein, sequential pH/redox-responsive nanoparticles (SRNs) are engineered to activate the immune microenvironment of tumor sites and lymph nodes. The two-modular SRNs could sequentially respond to the acidic tumor microenvironment and endosome compartments of dendritic cells (DCs) to precisely deliver doxorubicin (DOX) and imidazoquinolines (IMDQs). In the tumor microenvironment, released DOX triggers immunogenic cell death. In sentinel lymph nodes, the IMDQ nanoparticle module is dissociated in the acidic endosome compartment to specifically stimulate toll-like receptor 7/8 for DC maturation. Thus, the orchestrated nanoparticle system could enhance the infiltration of CD8α+ T cells in tumors and provoke a strong antitumor immune response toward primary and abscopal tumors in B16-OVA and CT26 tumor-bearing mice models. The cooperative self-assembled nanoparticle strategy provides a potential candidate of nanomedicine to advance the synergistic cancer chemo-immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Doxorrubicina , Morte Celular Imunogênica , Imunoterapia , Camundongos , Microambiente Tumoral
11.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499688

RESUMO

CCCH is a zinc finger family with a typical CCCH-type motif which performs a variety of roles in plant growth and development and responses to environmental stressors. However, the information about this family has not been reported for Osmanthus fragrans. In this study, a total of 66 CCCH predicted genes were identified from the O. fragrans genome, the majority of which had multiple CCCH motifs. The 66 OfCCCHs were found to be unevenly distributed on 21 chromosomes and were clustered into nine groups based on their phylogenetic analysis. In each group, the gene structure and domain makeup were comparatively conserved. The expression profiles of the OfCCCH genes were examined in various tissues, the flower-opening processes, and under various abiotic stresses using transcriptome sequencing and qRT-PCR (quantitative real-time PCR). The results demonstrated the widespread expression of OfCCCHs in various tissues, the differential expression of 22 OfCCCHs during flower-opening stages, and the identification of 4, 5, and 13 OfCCCHs after ABA, salt, and drought stress treatment, respectively. Furthermore, characterization of the representative OfCCCHs (OfCCCH8, 23, 27, and 36) revealed that they were all localized in the nucleus and that the majority of them had transcriptional activation in the yeast system. Our research offers the first thorough examination of the OfCCCH family and lays the groundwork for future investigations regarding the functions of CCCH genes in O. fragrans.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Estresse Fisiológico/genética , Transcriptoma , Perfilação da Expressão Gênica
12.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361622

RESUMO

In China, Prunus mume is a famous flowering tree that has been cultivated for 3000 years. P. mume grows in tropical and subtropical regions, and most varieties lack cold resistance; thus, it is necessary to study the low-temperature response mechanism of P. mume to expand the scope of its cultivation. We used the integrated transcriptomic and metabolomic analysis of a cold-resistant variety of P. mume 'Meiren', to identify key genes and metabolites associated with low temperatures during flowering. The 'Meiren' cultivar responded in a timely manner to temperature by way of a low-temperature signal transduction pathway. After experiencing low temperatures, the petals fade and wilt, resulting in low ornamental value. At the same time, in the cold response pathway, the activities of related transcription factors up- or downregulate genes and metabolites related to low temperature-induced proteins, osmotic regulators, protective enzyme systems, and biosynthesis and metabolism of sugars and acids. Our findings promote research on the adaptation of P. mume to low temperatures during wintering and early flowering for domestication and breeding.


Assuntos
Prunus , Prunus/genética , Transcriptoma , Temperatura , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Metaboloma
13.
Angew Chem Int Ed Engl ; 61(19): e202200152, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35218123

RESUMO

Precise monitoring of the subtle pH fluctuation during biological events remains a big challenge. Previously, we reported an ultra-pH-sensitive (UPS) nanoprobe library with a sharp pH response using co-polymerization of two tertiary amine-containing monomers with distinct pKa . Currently, we have generalized the UPS nanoparticle library with tunable pH transitions (pHt ) by copolymerization of a tertiary amine-containing monomer with a series of non-ionizable monomers. The pHt of nanoparticles is fine-tuned by the non-ionizable monomers with different hydrophobicity. Each non-ionizable monomer presents a constant contribution to pH tunability regardless of tertiary amine-containing monomers. Based on this strategy, we produced two libraries of nanoprobes with continuous pHt covering the entire physiological pH range (5.0-7.4) for fluorescent imaging of endosome maturation and cancers. This generalized strategy provides a powerful toolkit for biological studies and cancer theranostics.


Assuntos
Nanopartículas , Aminas , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polimerização
14.
Angew Chem Int Ed Engl ; 60(26): 14512-14520, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33860575

RESUMO

Noninvasive imaging strategies have been extensively investigated for in vivo mapping of sentinel lymph nodes (SLNs). However, the current imaging strategies fail to accurately assess tumor metastatic status in SLNs with high sensitivity. Here we report pH-amplified self-illuminating near-infrared nanoparticles, which integrate chemiluminescence resonance energy transfer (CRET) and signal amplification strategy, enabling accurate identification of metastatic SLNs. After draining into lymph nodes, the nanoparticles were phagocytosed and dissociated in acidic phagosomes of inflammatory macrophages to emit near-infrared luminescent light. Using these nanoparticles, we successfully differentiated tumor metastatic lymph nodes from benign ones. These nanoparticles also exhibited excellent imaging capability for early detection of metastatic SLNs in diverse animal tumor models with small tumor volume (100-200 mm3 ).


Assuntos
Transferência Ressonante de Energia de Fluorescência , Linfonodos/patologia , Linfoma/patologia , Nanopartículas/química , Humanos , Concentração de Íons de Hidrogênio
15.
Chem Rev ; 118(11): 5359-5391, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29693377

RESUMO

Nanomedicine is a discipline that applies nanoscience and nanotechnology principles to the prevention, diagnosis, and treatment of human diseases. Self-assembly of molecular components is becoming a common strategy in the design and syntheses of nanomaterials for biomedical applications. In both natural and synthetic self-assembled nanostructures, molecular cooperativity is emerging as an important hallmark. In many cases, interplay of many types of noncovalent interactions leads to dynamic nanosystems with emergent properties where the whole is bigger than the sum of the parts. In this review, we provide a comprehensive analysis of the cooperativity principles in multiple self-assembled nanostructures. We discuss the molecular origin and quantitative modeling of cooperative behaviors. In selected systems, we describe the examples on how to leverage molecular cooperativity to design nanomedicine with improved diagnostic precision and therapeutic efficacy in medicine.


Assuntos
Nanomedicina/métodos , Nanoestruturas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Multimerização Proteica , Proteínas/química , RNA/química , Eletricidade Estática , Temperatura de Transição
16.
Nano Lett ; 19(10): 6964-6976, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31518149

RESUMO

Immunotherapy through stimulating the host immune system has emerged as a powerful therapeutic strategy for various malignant and metastatic tumors in the clinic. However, harnessing the immune system for cancer treatment often fails to obtain a durable response rate due to the poor immunogenicity and the strong immunosuppressive milieu in the tumor site. Herein, a redox-activated liposome was developed from the self-assembly of the porphyrin-phospholipid conjugate and coencapsulation of indoleamine 2,3-dioxygenase (IDO) inhibitor into the interior lumen via remote-loading for simultaneous induction of immunogenic cell death (ICD) and reversing of suppressive tumor microenvironment. The nanoparticle exhibited prolonged blood circulation and enhanced tumor accumulation in the 4T1 tumor-bearing mice after intravenous injection. The nanovesicle could render exponential activation of fluorescence signal and photodynamic therapy (PDT) activity (>100-fold) in response to the high level of intracellular glutathione after endocytosed by tumor cells, thereby achieving effective inhibition of tumor growth and reduced phototoxicity to normal tissues owing to the activatable design of the nanoparticle. More importantly, redox-activated PDT induced intratumoral infiltration of cytotoxic T lymphocytes by induction of ICD of tumor cells. After combining with the IDO inhibitor, the systemic antitumor immune response was further augmented. Hence, we believe that the present nanovesicle strategy has the potential for the synergistic immunotherapy of the metastatic cancers.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Neoplasias Mamárias Animais/tratamento farmacológico , Nanopartículas/uso terapêutico , Porfirinas/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Lipossomos/uso terapêutico , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Fotoquimioterapia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/efeitos dos fármacos
17.
Microb Cell Fact ; 18(1): 38, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782164

RESUMO

BACKGROUND: Bitespiramycin (BT) is produced by recombinant spiramycin (SP) producing strain Streptomyces spiramyceticus harboring a heterologous 4″-O-isovaleryltransferase gene (ist). Exogenous L-Leucine (L-Leu) could improve the production of BT. The orf2 gene found from the genomic sequence of S. spiramyceticus encodes a leucine-responsive regulatory protein (Lrp) family regulator named as SSP_Lrp. The functions of SSP_Lrp and L-Leu involved in the biosynthesis of spiramycin (SP) and BT were investigated in S. spiramyceticus. RESULTS: SSP_Lrp was a global regulator directly affecting the expression of three positive regulatory genes, bsm23, bsm42 and acyB2, in SP or BT biosynthesis. Inactivation of SSP_Lrp gene in S. spiramyceticus 1941 caused minor increase of SP production. However, SP production of the ΔSSP_Lrp-SP strain containing an SSP_Lrp deficient of putative L-Leu binding domain was higher than that of S. spiramyceticus 1941 (476.2 ± 3.1 µg/L versus 313.3 ± 25.2 µg/L, respectively), especially SP III increased remarkably. The yield of BT in ΔSSP_Lrp-BT strain was more than twice than that in 1941-BT. The fact that intracellular concentrations of branched-chain amino acids (BCAAs) decreased markedly in the ΔSSP_Lrp-SP demonstrated increasing catabolism of BCAAs provided more precursors for SP biosynthesis. Comparative analysis of transcriptome profiles of the ΔSSP_Lrp-SP and S. spiramyceticus 1941 found 12 genes with obvious differences in expression, including 6 up-regulated genes and 6 down-regulated genes. The up-regulated genes are related to PKS gene for SP biosynthesis, isoprenoid biosynthesis, a Sigma24 family factor, the metabolism of aspartic acid, pyruvate and acyl-CoA; and the down-regulated genes are associated with ribosomal proteins, an AcrR family regulator, and biosynthesis of terpenoid, glutamate and glutamine. CONCLUSION: SSP_Lrp in S. spiramyceticus was a negative regulator involved in the SP and BT biosynthesis. The deletion of SSP_Lrp putative L-Leu binding domain was advantageous for production of BT and SP, especially their III components.


Assuntos
Proteína Reguladora de Resposta a Leucina/genética , Espiramicina/análogos & derivados , Espiramicina/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Engenharia Genética , Leucina/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
18.
Nanomedicine ; 17: 287-296, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30763723

RESUMO

Photothermal therapy (PTT) has been recognized as a promising approach for cancer treatment due to its minimal invasiveness and low systemic side effects. However, developing a photothermal agent with accurate tumor imaging capability is a prerequisite for the efficient PTT. Here, we developed a series of ultra-pH-sensitive indocyanine green (ICG)-conjugated nanoparticles for fluorescence imaging-guided tumor PTT. These nanoparticles exhibited high fluorescence activation ratio (~100-fold) with sharp pH transition (ΔpHon/off <0.25), and superior temperature response than free ICG. The in vivo imaging experiments demonstrated that the nanoparticles generated excellent tumor-to-normal tissue contrast through pH-triggered fluorescence activation in tumor sites, which provided information on tumor mass location, boundaries, and shape. Moreover, comparing to free ICG, the nanosystem had significantly longer blood circulation time and more accurate tumor targeting, providing efficient photothermal therapeutic effect against A549 tumor in living animals. In conclusion, this nanoplatform offers a potential strategy for imaging-guided cancer PTT.


Assuntos
Corantes/uso terapêutico , Verde de Indocianina/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Células A549 , Animais , Humanos , Concentração de Íons de Hidrogênio , Hipertermia Induzida , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Óptica , Fotoquimioterapia , Nanomedicina Teranóstica
19.
J Nat Prod ; 81(1): 178-187, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29308897

RESUMO

Analysis of the whole genome sequence of Streptomyces sp. IMB7-145 revealed the presence of seven type I polyketide synthase biosynthetic gene clusters, one of which was highly homologous to the biosynthetic gene cluster of azalomycin F. Detailed bioinformatic analysis of the modular organization of the PKS gene suggested that this gene is responsible for niphimycin biosynthesis. Guided by genomic analysis, a large-scale cultivation ultimately led to the discovery and characterization of four new niphimycin congeners, namely, niphimycins C-E (1-3) and 17-O-methylniphimycin (4). The configurations of most stereocenters of niphimycins have not been determined to date. In the present study, the relative configurations were elucidated by spectroscopic analysis, including J-based analysis and the CNMR database method. Further, the full absolute configurations of niphimycins were completely proposed for the first time based on biosynthetic gene cluster analysis of the ketoreductase and enoylreductase domains for hydroxy- and methyl-bearing stereocenters. Compounds 1, 3, 4, and niphimycin Iα (5) showed antimicrobial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci (MIC: 8-64 µg/mL), as well as cytotoxicity against the human HeLa cancer cell line (IC50: 3.0-9.0 µM). In addition, compounds 1 and 5 displayed significant activity against several Mycobacterium tuberculosis clinical isolates (MIC: 4-32 µg/mL).


Assuntos
Organismos Aquáticos/química , Streptomyces/química , Streptomyces/genética , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Genômica/métodos , Guanidinas/química , Guanidinas/farmacologia , Células HeLa , Células Hep G2 , Humanos , Células K562 , Células MCF-7 , Macrolídeos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Família Multigênica/genética , Policetídeo Sintases/genética
20.
Mar Drugs ; 16(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241346

RESUMO

Six new tetracenomycin congeners, saccharothrixones E⁻I (1⁻5) and 13-de-O-methyltetracenomycin X (6), were isolated from the rare marine-derived actinomycete Saccharothrix sp. 10-10. Their structures were elucidated by spectroscopic analysis and time-dependent density functional theory (TDDFT)-electronic circular dichroism (ECD) calculations. Saccharothrixones G (3) and H (4) are the first examples of tetracenomycins featuring a novel ring-A-cleaved chromophore. Saccharothrixone I (5) was determined to be a seco-tetracenomycin derivative with ring-B cleavage. The new structural characteristics, highlighted by different oxidations at C-5 and cleavages in rings A and B, enrich the structural diversity of tetracenomycins and provide evidence for tetracenomycin biosynthesis. Analysis of the structure⁻activity relationship of these compounds confirmed the importance of the planarity of the naphthacenequinone chromophore and the methylation of the polar carboxy groups for tetracenomycin cytotoxicity.


Assuntos
Actinomycetales/química , Antineoplásicos/farmacologia , Organismos Aquáticos/química , Naftacenos/farmacologia , Policetídeos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Dicroísmo Circular , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Naftacenos/química , Naftacenos/isolamento & purificação , Policetídeos/química , Quinonas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA