Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(5): 3315-3322, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38259107

RESUMO

To deal with the shortage and high price of helium-3 resources, adiabatic demagnetization refrigeration technology as an alternative to helium-3-based refrigeration technology has received much attention. The magnetism and ultralow-temperature magnetocaloric effect (MCE) of the EuB4O7 compound have been investigated. The results of magnetic and quasi-adiabatic demagnetization measurements suggest the absence of a magnetic order above 0.4 K for EuB4O7. The dipolar interaction between the nearest-neighbor Eu atoms has a characteristic energy of about 800 mK, which may induce a large MCE. The maximum magnetic entropy change reaches 22.8, 36.2, and 47.6 J·kg-1 K-1 at µ0H = 0-10 kOe, 0-20 kOe, and 0-50 kOe, respectively. Measurements by a quasi-adiabatic demagnetization device show that the lowest temperature achievable (289 mK) for polycrystalline EuB4O7 is lower than that (362 mK) for the commercial refrigerant Gd3Ga5O12 (GGG) single crystals. The hold time is more than 70 min below 700 mK, with an environment temperature of 2 K, proving that EuB4O7 exhibits superior cooling performance.

2.
Crit Rev Biotechnol ; 44(3): 352-372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36775662

RESUMO

Microbial electrosynthesis (MES) is a promising technology that mainly utilizes microbial cells to convert CO2 into value-added chemicals using electrons provided by the cathode. However, the low electron transfer rate is a solid bottleneck hindering the further application of MES. Thus, as an effective strategy, genetic tools play a key role in MES for enhancing the electron transfer rate and diversity of production. We describe a set of genetic strategies based on fundamental characteristics and current successes and discuss their functional mechanisms in driving microbial electrocatalytic reactions to fully comprehend the roles and uses of genetic tools in MES. This paper also analyzes the process of nanomaterial application in extracellular electron transfer (EET). It provides a technique that combines nanomaterials and genetic tools to increase MES efficiency, because nanoparticles have a role in the production of functional genes in EET although genetic tools can subvert MES, it still has issues with difficult transformation and low expression levels. Genetic tools remain one of the most promising future strategies for advancing the MES process despite these challenges.


Assuntos
Dióxido de Carbono , Engenharia Metabólica , Dióxido de Carbono/metabolismo , Transporte de Elétrons , Eletrodos
3.
Environ Sci Technol ; 58(1): 771-779, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38127806

RESUMO

Solid-phase microextraction (SPME) is a simple and highly effective sample-preparation technique for water analysis. However, the extraction coverage of a given SPME device with a specific coating can be an issue when analyzing multiple environmental contaminants. Therefore, instead of synthesizing one sorbent material with dual or multiple functions, we investigated a new strategy of preparing SPME blades using a homogeneous slurry made by mixing three different sorbent particles─namely, hydrophobic/lipophilic balanced (HLB), HLB-weak cationic exchange (HLB-WCX), and HLB-weak anionic exchange (HLB-WAX)─with a polyacrylonitrile (PAN) binder. The developed coating is matrix compatible, as the binder functions not only as a glue for immobilizing the sorbent particles but also as a porous filter, which only allows small molecules to enter the pores and interact with the particles, thus avoiding contamination from large elements. The results confirmed that the proposed mixed-coating SPME device provides good extraction performance for polar and nonpolar as well as positively and negatively charged compounds. Based on this device, three comprehensive analytical methodologies─high-throughput SPME-LC-MS/MS (for the quantitative analysis of targeted drugs of abuse and artificial sweeteners), in-bottle SPME-LC-high resolution MS (HRMS) (for the untargeted screening of organic contaminants), and on-site drone sampling SPME-LC-HRMS (for on-site sampling and untargeted screening)─were developed for use in environmental water analysis. The resultant data confirm that the proposed strategies enable comprehensive water quality assessment by using a single SPME device.


Assuntos
Microextração em Fase Sólida , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Microextração em Fase Sólida/métodos , Espectrometria de Massa com Cromatografia Líquida
4.
Bioorg Chem ; 144: 107140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38245950

RESUMO

Two new compounds namely [Zn(L1)phen]31 and Ni(L1)phen(MeOH) 2 (L1 = 3, 5-dichlorosalicylaldehyde thiosemicarbazone) were synthesized by the slow evaporation method at room temperature. The structure of ligand L1 was determined using 1H NMR and 13C NMR spectra. X-ray single crystal diffraction analysis revealed that compounds 1-2 can form 3D supramolecular network structures through π···π stacking and hydrogen bonding interactions. The DFT calculation shows that the coordination of ligand and metal is in good agreement with the experimental results. Hirshfeld surface analysis revealed that H…H and Cl…H interactions were the predominant interactions in compounds 1-2. Energy framework analysis indicated that dispersion energy played a dominant role in the energy composition of compounds 1-2. The inhibitory effects of compounds 1-2 against Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA) were tested using the paper disk diffusion method (1: E. coli: 18 mm, MRSA: 17 mm, 2: E. coli: 15 mm, MRSA: 16 mm). Ion releasing experiments were conducted to assess the ion release capacity of compounds 1-2 (Zn2+, 4 days, 38.33 µg/mL; Ni2+, 4 days, 29.12 µg/mL). Molecular docking demonstrated the interaction modes of compounds 1-2 with UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and dihydrofolate reductase (DHFR) in bacteria, involving hydrophobic, stacking, hydrogen bonding and halogen bonding interactions. The generation of reactive oxygen species (ROS) in bacteria under the presence of compounds 1-2 were evaluated using a fluorescent dye known as dichlorodihydrofluorescein diacetate (DCFH-DA). Potential antibacterial mechanisms of compounds 1-2 were proposed.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Escherichia coli , Ligantes , Simulação de Acoplamento Molecular , Zinco/farmacologia , Zinco/química , Níquel/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia
5.
Anal Chem ; 95(16): 6718-6724, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37039451

RESUMO

Solid-phase microextraction (SPME) is a simple and effective sample-preparation technique for the analysis of complex samples. However, sample matrices containing high concentrations of nonpolar substances or spiked analytes in free form can cause swelling, saturation, and/or competition phenomena in the coating material. This results in a displacement effect wherein polar analytes with low affinities for the solid coating material are displaced by nonpolar substances in the matrix or spiked analytes with a high affinity. Therefore, the quantitative analysis of polar analytes can be challenging, as the displacement effect causes non-linearity in the calibration curves. This paper presents a comprehensive investigation of the conditions under which the displacement effect occurs and how it influences the quantitative analysis of polar analytes. To remedy this issue, a sequential SPME strategy using two SPME blades with different selectivities is applied. SPME blades offer a large surface area and coating volume─and thus, greater extraction capacity─which may mitigate the displacement effect. In addition, the biocompatible coatings on the SPME blades are comprised of small amounts of sorbent particles embedded by a polyacrylonitrile (PAN) binder, which allows them to be directly immersed into complex matrixes such as biological and food samples, as the PAN acts as a barrier that prevents the adsorption of large macromolecules (e.g., cells and proteins). As such, a C18/PAN-coated blade was applied for the first extraction step, which significantly decreased the concentrations of nonpolar compounds in the sample. In the second step, a hydrophilic-lipophilic balanced (HLB)/PAN-coated blade was employed to extract the polar analytes and any remaining nonpolar analytes. The proposed sequential SPME strategy successfully enabled the quantitative determination of polar and nonpolar drugs of abuse with log P values ranging from 0.16 to 4.98 in biological matrices while also providing good linearities.

6.
Metab Eng ; 80: 1-11, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673324

RESUMO

Shewanella oneidensis MR-1 (S. oneidensis MR-1) has been shown to benefit from microbial electrosynthesis (MES) due to its exceptional electron transfer efficiency. In this study, genes involved in both extracellular electron uptake (EEU) and intracellular CO2 conversion processes were examined and regulated to enhance MES performance. The key genes identified for MES in the EEU process were mtrB, mtrC, mtrD, mtrE, omcA and cctA. Overexpression of these genes resulted in 1.5-2.1 times higher formate productivity than that of the wild-type strains (0.63 mmol/(L·µg protein)), as 0.94-1.61 mmol/(L·µg protein). In the intracellular CO2 conversion process, overexpression of the nadE, nadD, nadR, nadV, pncC and petC genes increased formate productivity 1.3-fold-3.4-fold. Moreover, overexpression of the formate dehydrogenase genes fdhA1, fdhB1 and fdhX1 in modified strains led to a 2.3-fold-3.1-fold increase in formate productivity compared to wild-type strains. The co-overexpression of cctA, fdhA1 and nadV in the mutant strain resulted in 5.59 times (3.50 mmol/(L·µg protein)) higher formate productivity than that of the wild-type strains. These findings revealed that electrons of MES derived from the electrode were utilized in the energy module for synthesizing ATP and NADH, followed by the synthesis of formate in formate dehydrogenase by the combinatorial effects of ATP, NADH, electrons and CO2. The results provide new insights into the mechanism of MES in S. oneidensis MR-1 and pave the way for genetic improvements that could facilitate the further application of MES.


Assuntos
Proteínas de Bactérias , Shewanella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Formiato Desidrogenases/metabolismo , NAD/metabolismo , Dióxido de Carbono/metabolismo , Shewanella/genética , Shewanella/metabolismo , Formiatos/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Chemistry ; 27(49): 12649-12658, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34180095

RESUMO

Graphdiyne (g-Cn H2n-2 ), a novel two-dimension carbon allotrope material composed of a sp- and sp2 -hybrid carbon network, has been widely explored since it was synthesized for the first time by Li's group in 2010. A series distinct and excellent properties bestow graphdiyne excellent performance in many fields. Here, an innovative progress for preparing graphdiyne by using Cu+ contained material as catalyst is reported and the composite CuI-GD is coupled with flower-like NiAl-LDH to produce H2 from photocatalytic water splitting. The results of FTIR and Raman spectroscopy together reveal that graphdiyne nanosheets are synthesized successfully by employing a cross-coupling method. Photocatalytic hydrogen evolution performance shows that the hydrogen production activity of CuI-GD/NiAl-LDH has a 15- and 216-fold enhancement compared with CuI-GD and NiAl-LDH, respectively. A series of characterizations are carried out to expound the underlying reasons in the enhancement of the photocatalytic hydrogen production performance of CuI-GD/NiAl-LDH. Meanwhile, a possible mechanism for the photocatalytic hydrogen evolution process was proposed to understand the interaction among these materials.

8.
J Environ Sci (China) ; 101: 361-372, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33334531

RESUMO

Chemical speciation can fundamentally affect the potential toxicity and bioavailability of heavy metals. The transformation of heavy metal speciation and change of bioavailability were investigated in an anaerobic digestion (AD) system using four different substrates (pig manure (PM), cattle manure (CAM), chicken manure (CHM) and rice straw (RS)). The results obtained indicated that the total contents of heavy metals in PM, CHM and CAM were higher than in RS and decreased in the order Zn > Cu > Ni > Pb > As > Cd in all substrates. Moreover, the speciation with the largest proportion for each heavy metal was the same both in the different substrates and the biogas residues. Among them, Zn, Ni, Cd and As were mainly in the reducible fraction (F2), while Cu was mainly in the oxidizable fraction (F3) and Pb occurred predominantly in the residual fraction (F4). Our results further indicated that the AD process had a greater effect on the speciation of heavy metals in CHM and PM, but less on CAM and RS. The rates of change in bioavailability followed the order PM > CHM > CAM > RS. Changes in organic matter, humic acid or local metal ion environment as a result of AD were inferred as likely mechanisms leading to the transformation of heavy metal speciation. These results enhanced our understanding of the behavior of heavy metals in AD and provided a new perspective for the treatment and disposal of the substrates.


Assuntos
Metais Pesados , Anaerobiose , Animais , Disponibilidade Biológica , Bovinos , Substâncias Húmicas , Esterco , Suínos
9.
Small ; 16(44): e2004194, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33043619

RESUMO

Cellular internalization of nanomaterials to endow cells with more functionalities is highly desirable. Herein, a straightforward strategy for internalizing red-emission carbon dots (CDs) into Shewanella xiamenensis is proposed. This suggests that the internalized CDs not only afford enhanced conductivity of bacteria but also trigger the cellular physiological response to secrete abundant electron shuttles to aid the boosting of extracellular electron transfer (EET) efficiency. Additionally, once illuminated, internalized CDs can also serve as light absorbers to allow for photogenerated electrons to be transferred into cellular metabolism to further facilitate light-enhanced EET processes. Specifically, the findings advance the fundamental understanding of the interaction between internalized carbon-based semiconductor and cells in the dark and light, and provide a facile and effective strategy for enhancing EET efficiency.


Assuntos
Elétrons , Shewanella , Carbono , Transporte de Elétrons
10.
Ecotoxicol Environ Saf ; 195: 110457, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182529

RESUMO

The speciation of heavy metals, besides the total concentrations, urgently need to be considered when assessing the eco-toxicity and the bioavailability of heavy metals in environment. This paper aims to investigate the distribution and chemical speciation (e.g. the acid extractable fraction (F1), the reducible fraction (F2), the oxidizable fraction (F3), and the residual fraction (F4)) of heavy metals during the anaerobic digestion process of swine manure. The majority of six heavy metals from the manure was located in biogas residue in the order of decreasing concentration Zn > Cu > Ni > As > Pb > Cd. The transformation of heavy metals among four fractions was observed during the digestion process, and the change of bioavailable fraction of Zn, Cu, Ni, Cd, As and Pb were 9.71%, -6.04%, -19.24%, 13.62%, -16.48% and -7.22%, respectively. The heat map of correlation coefficients and the stepwise linear regressions model were established to describe the correlation between the bioavailability of the metals and the given digestion variables to predict the influence of the selected variables on the bioavailability of heavy metals. The variations of heavy metal bioavailable fractions are attributed to three key digestion variables, NH4+-N concentration, CH4% in biogas daily yield and pH. These results provide a new perspective for analysis and control of heavy metals during the anaerobic digestion process.


Assuntos
Metais Pesados/análise , Anaerobiose , Animais , Biocombustíveis , Esterco , Suínos
11.
J Environ Manage ; 248: 109310, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31376615

RESUMO

Microbial fuel cell (MFC) was compared to conventional biological techniques for decolorization of anthraquinone dye, reactive blue 19 (RB19) with simultaneous electricity generation. With 50 mg/L of RB19 in the anode chamber as a fuel, the MFC achieved 89% decolorization efficiency of RB19 within 48 h, compared with 51 and 55% decolorization efficiency achieved by aerobic and anaerobic techniques, respectively. The cyclic voltammetry results showed that RB19 could promote the electron transfer and redox reaction on the surface of anode. The RB19 decolorization process can be described by first-order kinetics, and the decolorization rate decreased with the increase of RB19 concentration. The high-throughput 16S rRNA sequencing analysis indicated significant microbial community shift in the MFC. At phylum level, the majority of sequences belong to Proteobacteria, accounting from 23 to 84% of the total reads in each bacterium community. At genus level, the MFC contained two types of microorganisms in general such as electrochemically active and decolorization bacteria. Overall, MFC is an effective method for anthraquinone dye treatment with simultaneous energy recovery. The 16S rRNA revealed that there were two major functioning microbial communities in the MFC such as electricity-producing and RB19-degrading bacteria which synergistically worked on RB19 degradation.


Assuntos
Fontes de Energia Bioelétrica , Antraquinonas , Corantes , Eletricidade , Eletrodos , RNA Ribossômico 16S
12.
J Environ Sci (China) ; 78: 193-203, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30665638

RESUMO

Microbially mediated bioreduction of iron oxyhydroxide plays an important role in the biogeochemical cycle of iron. Geobacter sulfurreducens is a representative dissimilatory iron-reducing bacterium that assembles electrically conductive pili and cytochromes. The impact of supplementation with γ-Fe2O3 nanoparticles (NPs) (0.2 and 0.6 g) on the G. sulfurreducens-mediated reduction of ferrihydrite was investigated. In the overall performance of microbial ferrihydrite reduction mediated by γ-Fe2O3 NPs, stronger reduction was observed in the presence of direct contact with γ-Fe2O3 NPs than with indirect contact. Compared to the production of Fe(II) derived from biotic modification with ferrihydrite alone, increases greater than 1.6- and 1.4-fold in the production of Fe(II) were detected in the biotic modifications in which direct contact with 0.2 g and 0.6 g γ-Fe2O3 NPs, respectively, occurred. X-ray diffraction analysis indicated that magnetite was a unique representative iron mineral in ferrihydrite when active G. sulfurreducens cells were in direct contact with γ-Fe2O3 NPs. Because of the sorption of biogenic Fe(II) onto γ-Fe2O3 NPs instead of ferrihydrite, the addition of γ-Fe2O3 NPs could also contribute to increased duration of ferrihydrite reduction by preventing ferrihydrite surface passivation. Additionally, electron microscopy analysis confirmed that the direct addition of γ-Fe2O3 NPs stimulated the electrically conductive pili and cytochromes to stretch, facilitating long-range electron transfer between the cells and ferrihydrite. The obtained findings provide a more comprehensive understanding of the effects of iron oxide NPs on soil biogeochemistry.


Assuntos
Biodegradação Ambiental , Compostos Férricos/metabolismo , Geobacter/fisiologia , Nanopartículas/metabolismo , Compostos Férricos/química , Óxido Ferroso-Férrico , Nanopartículas/química
13.
BMC Biotechnol ; 17(1): 84, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149843

RESUMO

BACKGROUND: The identification of microorganisms with excellent flocculant-producing capability and optimization of the fermentation process are necessary for the wide-scale application of bioflocculants. Thus, we evaluated the flocculant-producing ability of a novel strain identified by the screening of marine bacteria, and we report for the first time the properties of the bioflocculant produced by Alteromonas sp. in the treatment of dye wastewater. RESULTS: A bioflocculant-producing bacterium was isolated from seawater and identified as Alteromonas sp. CGMCC 10612. The optimal carbon and nitrogen sources for the strain were 30 g/L glucose and 1.5 g/L wheat flour. In a 2-L fermenter, the flocculating activity and bioflocculant yield reached maximum values of 2575.4 U/mL and 11.18 g/L, respectively. The bioflocculant was separated and showed good heat and pH stability. The purified bioflocculant was a proteoglycan consisting of 69.61% carbohydrate and 21.56% protein (wt/wt). Infrared spectrometry further indicated the presence of hydroxyl, carboxyl and amino groups preferred for flocculation. The bioflocculant was a nanoparticle polymer with an average mass of 394,000 Da. The purified bioflocculant was able to remove Congo Red, Direct Black and Methylene Blue at efficiencies of 98.5%, 97.9% and 72.3% respectively. CONCLUSIONS: The results of this study indicated that the marine strain Alteromonas sp. is a good candidate for the production of a novel bioflocculant and suggested its potential industrial utility for biotechnological processes.


Assuntos
Alteromonas/química , Organismos Aquáticos/química , Corantes/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Carbono/metabolismo , Corantes/análise , Corantes/química , Floculação , Nitrogênio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
14.
Biotechnol Bioeng ; 114(3): 645-655, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27667128

RESUMO

The present study reports the sequenced genome of Bacillus licheniformis CGMCC 2876, which is composed of a 4,284,461 bp chromosome that contains 4,188 protein-coding genes, 72 tRNA genes, and 21 rRNA genes. Additional analysis revealed an eps gene cluster with 16 open reading frames. Conserved Domains Database analysis combined with qPCR experiments indicated that all genes in this cluster were involved in polysaccharide bioflocculant synthesis. Phosphoglucomutase and UDP-glucose pyrophosphorylase were supposed to be key enzymes in polysaccharide secretion in B. licheniformis. A biosynthesis pathway for the production of polysaccharide bioflocculant involving the integration of individual genes was proposed based on functional analysis. Overexpression of epsDEF from the eps gene cluster in B. licheniformis CGMCC 2876 increased the flocculating activity of the recombinant strain by 90% compared to the original strain. Similarly, the crude yield of polysaccharide bioflocculant was enhanced by 27.8%. Overexpression of the UDP-glucose pyrophosphorylase gene not only increased the flocculating activity by 71% but also increased bioflocculant yield by 13.3%. Independent of UDP-N-acetyl-D-mannosamine dehydrogenase gene, flocculating activity, and polysaccharide yield were negatively impacted by overexpression of the UDP-N-acetylglucosamine 2-epimerase gene. Overall, epsDEF and gtaB2 were identified as key genes for polysaccharide bioflocculant synthesis in B. licheniformis. These results will be useful for further engineering of B. licheniformis for industrial bioflocculant production. Biotechnol. Bioeng. 2017;114: 645-655. © 2016 Wiley Periodicals, Inc.


Assuntos
Bacillus licheniformis/genética , Genoma Bacteriano/genética , Engenharia Metabólica/métodos , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Bacillus licheniformis/enzimologia , Bacillus licheniformis/metabolismo , Polissacarídeos Bacterianos/análise
15.
Microb Cell Fact ; 16(1): 22, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28178965

RESUMO

BACKGROUND: Poly-gamma-glutamic acid (γ-PGA) is a promising macromolecule with potential as a replacement for chemosynthetic polymers. γ-PGA can be produced by many microorganisms, including Bacillus species. Bacillus licheniformis CGMCC2876 secretes γ-PGA when using glycerol and trisodium citrate as its optimal carbon sources and secretes polysaccharides when using glucose as the sole carbon source. To better understand the metabolic mechanism underlying the secretion of polymeric substances, SWATH was applied to investigate the effect of glucose on the production of polysaccharides and γ-PGA at the proteome level. RESULTS: The addition of glucose at 5 or 10 g/L of glucose decreased the γ-PGA concentration by 31.54 or 61.62%, respectively, whereas the polysaccharide concentration increased from 5.2 to 43.47%. Several proteins playing related roles in γ-PGA and polysaccharide synthesis were identified using the SWATH acquisition LC-MS/MS method. CcpA and CcpN co-enhanced glycolysis and suppressed carbon flux into the TCA cycle, consequently slowing glutamic acid synthesis. On the other hand, CcpN cut off the carbon flux from glycerol metabolism and further reduced γ-PGA production. CcpA activated a series of operons (glm and epsA-O) to reallocate the carbon flux to polysaccharide synthesis when glucose was present. The production of γ-PGA was influenced by NrgB, which converted the major nitrogen metabolic flux between NH4+ and glutamate. CONCLUSION: The mechanism by which B. licheniformis regulates two macromolecules was proposed for the first time in this paper. This genetic information will facilitate the engineering of bacteria for practicable strategies for the fermentation of γ-PGA and polysaccharides for diverse applications.


Assuntos
Bacillus licheniformis/metabolismo , Fermentação , Glucose/metabolismo , Ácido Poliglutâmico/análogos & derivados , Bacillus licheniformis/genética , Ciclo do Ácido Cítrico/fisiologia , Regulação Bacteriana da Expressão Gênica , Glicerol/metabolismo , Glicólise , Ácido Poliglutâmico/metabolismo , Polissacarídeos Bacterianos/biossíntese , Proteoma/metabolismo , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
J Environ Sci (China) ; 57: 329-337, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28647253

RESUMO

The purpose of this study is to investigate the effects of nano-sized or submicro Fe2O3/Fe3O4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe2O3/Fe3O4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe2O3 (317.1±2.1mg/L) and Fe3O4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe2O3/Fe3O4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe2O3/Fe3O4 amendments was responsible for the adsorption of nano-sized Fe2O3/Fe3O4 to soluble Cr(VI). Hence, the presence of nano-sized Fe2O3/Fe3O4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes.


Assuntos
Biodegradação Ambiental , Cromo/metabolismo , Compostos Férricos/química , Nanopartículas/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Adsorção , Cromo/química , Eletroforese em Gel de Gradiente Desnaturante , Poluentes do Solo/química
17.
Biotechnol Bioeng ; 113(4): 797-806, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26388297

RESUMO

Some bioflocculants composed of extracellular polymeric substances are produced under peculiar conditions. Bacillus licheniformis CGMCC2876 is a microorganism that secretes both extracellular polysaccharides (EPS) and poly-gamma-glutamic acid (γ-PGA) under stress conditions. In this work, SWATH acquisition LC-MS/MS method was adopted for differential proteomic analysis of B. licheniformis, aiming at determining the bacterial stress mechanism. Compared with LB culture, 190 differentially expressed proteins were identified in B. licheniformis CGMCC2876 cultivated in EPS culture, including 117 up-regulated and 73 down-regulated proteins. In γ-PGA culture, 151 differentially expressed proteins, 89 up-regulated and 62 down-regulated, were found in the cells. Up-regulated proteins involved in amino acid biosynthesis were found to account for 43% and 41% of the proteomes in EPS and γ-PGA cultivated cells, respectively. Additionally, a series of proteins associated with amino acid degradation were found to be repressed under EPS and γ-PGA culture conditions. Transcriptional profiling via the qPCR detection of selected genes verified the proteomic analysis. Analysis of free amino acids in the bacterial cells further suggested the presence of amino acid starvation conditions. EPS or γ-PGA was synthesized to alleviate the effect of amino acid limitation in B. licheniformis. This study identified a stress response mechanism in the synthesis of macromolecules in B. licheniformis, providing potential culture strategies to improve the production of two promising bioflocculants.


Assuntos
Bacillus/química , Bacillus/fisiologia , Proteínas de Bactérias/análise , Ácido Poliglutâmico/análogos & derivados , Polissacarídeos Bacterianos/metabolismo , Proteoma/análise , Estresse Fisiológico , Aminoácidos/análise , Bacillus/metabolismo , Citosol/química , Perfilação da Expressão Gênica , Ácido Poliglutâmico/metabolismo , Proteômica , Reação em Cadeia da Polimerase em Tempo Real
18.
Environ Sci Technol ; 48(13): 7469-76, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24853472

RESUMO

Microcosm experiments were conducted to investigate the mechanism of microbial-mediated As mobilization from high arsenic tailing sediments amended with nanoparticles (NPs). The addition of SiO2 NPs could substantially stimulate arsenic mobilization in the sodium acetate amendment sediments. However, the addition of Fe2O3 and Fe3O4 NPs restrained arsenic release because these NPs resulted in Fe-As coprecipiate. Moreover, NP additions in sediments amended with sodium acetate as the electron donor clearly promoted microbial dissimilatory iron reduction. Nearly 4 times the Fe(II) (11.67-12.87 mg·L(-1)) from sediments amended with NPs and sodium acetate was released compared to sediments amended with only sodium acetate (3.49 mg·L(-1)). Based on molecular fingerprinting and sequencing analyses, the NP additions could potentially change the sediment bacterial community composition and increase the abundance of Fe(III) and As(V) reduction bacteria. Several potential NP-stimulated bacteria were related to Geobacter, Anaeromyxobacter, Clostridium, and Alicyclobacillus. The findings offer a relatively comprehensive assessment of NP (e.g., Fe2O3, Fe3O4, and SiO2) effects on sediment bacterial communities and As mobilization.


Assuntos
Arsênio/isolamento & purificação , Arsenicais/química , Sedimentos Geológicos/química , Mineração , Nanopartículas/química , Sulfetos/química , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Precipitação Química , China , Compostos Férricos/química , Compostos Ferrosos/química , Dosagem de Genes , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Ferro/análise , Dados de Sequência Molecular , Nanopartículas/ultraestrutura , Dióxido de Silício/química , Poluentes Químicos da Água/análise
19.
Appl Microbiol Biotechnol ; 98(10): 4771-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24633443

RESUMO

Anaerobic co-fermentation of straw and manure is widely used for waste treatment and biogas production. However, the differences between the straw- and slurry-associated prokaryotic communities, their dynamic changes throughout the co-fermentation process, and their correlations with bioreactor performance are not fully understood. To address these questions, we investigated the prokaryotic community compositions and the dynamics of prokaryotes attached to the straw and in the slurry during co-fermentation of wheat straw and swine manure using pyrosequencing technique. The results showed that straw- and slurry-associated prokaryotes were different in their structure and function. Straw-associated prokaryotic communities were overrepresented by the phyla Spirochaetes and Fibrobacteres, while Synergistetes and Euryarchaeota were more abundant in the slurry. The straw-associated candidate class TG3, genera Fibrobacter, Bacteroides, Acetivibrio, Clostridium III, Papillibacter, Treponema, Sedimentibacter, and Lutispora may specialize in substrate hydrolysis. Propionate was the most abundant volatile fatty acid in the slurry, and it was probably degraded through syntrophic oxidation by the genera Pelotomaculum, Methanoculleus, and Methanosaeta. The protein-fermenting bacteria Aminobacterium and Cloacibacillus were much abundant in the slurry, indicating that proteins are important substrates in the co-fermentation. This study provided a better understanding of the anaerobic co-fermentation process that is driven by spatially differentiated microbiota.


Assuntos
Archaea/classificação , Bactérias/classificação , Biota , Esterco/microbiologia , Caules de Planta/microbiologia , Esgotos/microbiologia , Anaerobiose , Animais , Reatores Biológicos/microbiologia , Fermentação , Dados de Sequência Molecular , Oxirredução , Propionatos/metabolismo , Análise de Sequência de DNA , Suínos , Triticum
20.
J Sep Sci ; 37(15): 1967-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24840862

RESUMO

In situ ionic-liquid-dispersive liquid-liquid microextraction was introduced for extracting Sudan dyes from different liquid samples followed by detection using ultrafast liquid chromatography. The extraction and metathesis reaction can be performed simultaneously, the extraction time was shortened notably and higher enrichment factors can be obtained compared with traditional dispersive liquid-liquid microextraction. When the extraction was coupled with ultrafast liquid chromatography, a green, convenient, cheap, and efficient method for the determination of Sudan dyes was developed. The effects of various experimental factors, including type of extraction solvent, amount of 1-hexyl-3-methylimidazolium chloride, ratio of ammonium hexafluorophosphate to 1-hexyl-3-methylimidazolium chloride, pH value, salt concentration in sample solution, extraction time and centrifugation time were investigated and optimized for the extraction of four kinds of Sudan dyes. The limits of detection for Sudan I, II, III, and IV were 0.324, 0.299, 0.390, and 0.655 ng/mL, respectively. Recoveries obtained by analyzing the seven spiked samples were between 65.95 and 112.82%. The consumption of organic solvent (120 µL acetonitrile per sample) was very low, so it could be considered as a green analytical method.


Assuntos
Corantes/isolamento & purificação , Microextração em Fase Líquida/métodos , Cromatografia Líquida de Alta Pressão , Corantes/análise , Líquidos Iônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA