Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(2): e2202488120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595667

RESUMO

Human exposure to monomethylmercury (CH3Hg), a potent neurotoxin, is principally through the consumption of seafood. The formation of CH3Hg and its bioaccumulation in marine food webs experience ongoing impacts of global climate warming and ocean biogeochemistry alterations. Employing a series of sensitivity experiments, here we explicitly consider the effects of climate change on marine mercury (Hg) cycling within a global ocean model in the hypothesized twenty-first century under the business-as-usual scenario. Even though the overall prediction is subjected to significant uncertainty, we identify several important climate change impact pathways. Elevated seawater temperature exacerbates elemental Hg (Hg0) evasion, while decreased surface wind speed reduces air-sea exchange rates. The reduced export of particulate organic carbon shrinks the pool of potentially bioavailable divalent Hg (HgII) that can be methylated in the subsurface ocean, where shallower remineralization depth associated with lower productivity causes impairment of methylation activity. We also simulate an increase in CH3Hg photodemethylation potential caused by increased incident shortwave radiation and less attenuation by decreased sea ice and chlorophyll. The model suggests that these impacts can also be propagated to the CH3Hg concentration in the base of the marine food web. Our results offer insight into synergisms/antagonisms in the marine Hg cycling among different climate change stressors.


Assuntos
Mercúrio , Poluentes Químicos da Água , Humanos , Mercúrio/análise , Água do Mar , Cadeia Alimentar , Mudança Climática , Metilação , Poluentes Químicos da Água/análise
2.
Nucleic Acids Res ; 51(18): 9552-9566, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37697433

RESUMO

Intrinsic DNA properties including bending play a crucial role in diverse biological systems. A recent advance in a high-throughput technology called loop-seq makes it possible to determine the bendability of hundred thousand 50-bp DNA duplexes in one experiment. However, it's still challenging to assess base-resolution sequence bendability in large genomes such as human, which requires thousands of such experiments. Here, we introduce 'BendNet'-a deep neural network to predict the intrinsic DNA bending at base-resolution by using loop-seq results in yeast as training data. BendNet can predict the DNA bendability of any given sequence from different species with high accuracy. To explore the utility of BendNet, we applied it to the human genome and observed DNA bendability is associated with chromatin features and disease risk regions involving transcription/enhancer regulation, DNA replication, transcription factor binding and extrachromosomal circular DNA generation. These findings expand our understanding on DNA mechanics and its association with transcription regulation in mammals. Lastly, we built a comprehensive resource of genomic DNA bendability profiles for 307 species by applying BendNet, and provided an online tool to assess the bendability of user-specified DNA sequences (http://www.dnabendnet.com/).

3.
J Biol Chem ; 299(7): 104923, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321451

RESUMO

Mammalian brain tubulins undergo a reversible posttranslational modification-polyglutamylation-which attaches a secondary polyglutamate chain to the primary sequence of proteins. Loss of its erasers can disrupt polyglutamylation homeostasis and cause neurodegeneration. Tubulin tyrosine ligase like 4 (TTLL4) and TTLL7 were known to modify tubulins, both with preference for the ß-isoform, but differently contribute to neurodegeneration. However, differences in their biochemical properties and functions remain largely unknown. Here, using an antibody-based method, we characterized the properties of a purified recombinant TTLL4 and confirmed its sole role as an initiator, unlike TTLL7, which both initiates and elongates the side chains. Unexpectedly, TTLL4 produced stronger glutamylation immunosignals for α-isoform than ß-isoform in brain tubulins. Contrarily, the recombinant TTLL7 raised comparable glutamylation immunoreactivity for two isoforms. Given the site selectivity of the glutamylation antibody, we analyzed modification sites of two enzymes. Tandem mass spectrometry analysis revealed their incompatible site selectivity on synthetic peptides mimicking carboxyl termini of α1- and ß2-tubulins and a recombinant tubulin. Particularly, in the recombinant α1A-tubulin, a novel region was found glutamylated by TTLL4 and TTLL7, that again at distinct sites. These results pinpoint different site specificities between two enzymes. Moreover, TTLL7 exhibits less efficiency to elongate microtubules premodified by TTLL4, suggesting possible regulation of TTLL7 elongation activity by TTLL4-initiated sites. Finally, we showed that kinesin behaves differentially on microtubules modified by two enzymes. This study underpins the different reactivity, site selectivity, and function of TTLL4 and TTLL7 on brain tubulins and sheds light on their distinct role in vivo.


Assuntos
Microtúbulos , Peptídeo Sintases , Tubulina (Proteína) , Animais , Encéfalo/metabolismo , Microtúbulos/metabolismo , Ácido Poliglutâmico/química , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Peptídeo Sintases/metabolismo
4.
J Cell Physiol ; : e31370, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988059

RESUMO

Mitochondria are dynamic organelles that continuously undergo fusion/fission to maintain normal cell physiological activities and energy metabolism. When mitochondrial dynamics is unbalanced, mitochondrial homeostasis is broken, thus damaging mitochondrial function. Accumulating evidence demonstrates that impairment in mitochondrial dynamics leads to lung tissue injury and pulmonary disease progression in a variety of disease models, including inflammatory responses, apoptosis, and barrier breakdown, and that the role of mitochondrial dynamics varies among pulmonary diseases. These findings suggest that modulation of mitochondrial dynamics may be considered as a valid therapeutic strategy in pulmonary diseases. In this review, we discuss the current evidence on the role of mitochondrial dynamics in pulmonary diseases, with a particular focus on its underlying mechanisms in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), lung cancer and bronchopulmonary dysplasia (BPD), and outline effective drugs targeting mitochondrial dynamics-related proteins, highlighting the great potential of targeting mitochondrial dynamics in the treatment of pulmonary disease.

5.
Am J Pathol ; 193(11): 1809-1816, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963628

RESUMO

Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. Herein, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. Sections of the droplet digital PCR-positive eyes from four other patients were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, a range of common histopathologic alterations were identified within ocular tissue, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Autopsia , RNA Viral/análise , Inflamação
6.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 128-136, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430031

RESUMO

As the main active ingredient of Astragalus, Astragaloside IV (AS-IV) can ameliorate pulmonary fibrosis. In this experiment, we studied how AS-IV reduces idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) or TGF-ß1 was treated in mice or alveolar epithelial cells to mimic IPF in vivo as well as in vitro. ASV-IV alleviated levels of inflammatory cytokines and fibrosis markers in IPF model. Through detection of autophagy-related genes, ASV-IV was observed to induce autophagy in IPF. Besides, ASV-IV inhibited miR-21 expression in IPF models, and overexpression of miR-21 could reverse the protective potential of ASV-IV on IPF. PTEN was targeted by miR-21 and was up-regulated by ASV-IV in IPF models. In addition, levels of inflammatory cytokines and fibrosis markers, autophagy, as well as the PI3K/AKT/mTOR pathway regulated by ASV-IV could be neutralized after treatment with autophagy inhibitors, miR-21 mimics, or si-PTEN. Our study demonstrates that ASV-IV inhibits IPF through activation of autophagy by miR-21-mediated PTEN/PI3K/AKT/mTOR pathway, suggesting that ASV-IV could be acted to be a promising therapeutic method for IPF.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Saponinas , Triterpenos , Animais , Camundongos , Autofagia/efeitos dos fármacos , Fibrose , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico , PTEN Fosfo-Hidrolase/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo
7.
Pediatr Radiol ; 54(6): 1012-1021, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38538753

RESUMO

BACKGROUND: An increasing rate of encephalopathy associated with coronavirus disease 2019 (COVID-19) has been observed among children. However, the literature on neuroimaging data in children with COVID-19 is limited. OBJECTIVE: To analyze brain magnetic resonance imaging (MRI) of pediatric COVID-19 patients with neurological complications. MATERIALS AND METHODS: This multicenter retrospective observational study analyzed clinical (n=102, 100%) and neuroimaging (n=93, 91.2%) data of 102 children with COVID-19 infections and comorbid acute neurological symptoms. These children were hospitalized at five pediatric intensive care units (PICUs) in China between December 1, 2022, and January 31, 2023. RESULTS: All patients were positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as detected via reverse transcriptase polymerase chain reaction. About 75.7% of the children were infected with the Omicron variant BF.7 strain. Brain MRI was performed 1-12 days following the onset of neurological symptoms, which revealed acute neuroimaging findings in 74.2% (69/93) of cases, including evidence of acute necrotizing encephalopathy (33/69, 47.8%), encephalitis (31/69, 44.9%), reversible splenial lesion syndrome (3/69, 4.3%), reversible posterior leukoencephalopathy (1/69, 1.4%), and hippocampal atrophy (1/69, 1.4%). CONCLUSIONS: Overall, these data highlighted five neuroimaging patterns associated with the outbreak of the SARS-CoV-2 Omicron variant, with acute necrotizing encephalopathy being the most common of these neuroimaging findings. Rarely, the brain MRI of these pediatric COVID-19 patients also demonstrate hippocampal atrophy.


Assuntos
COVID-19 , Imageamento por Ressonância Magnética , SARS-CoV-2 , Humanos , Estudos Retrospectivos , COVID-19/diagnóstico por imagem , COVID-19/complicações , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Criança , Pré-Escolar , Lactente , Adolescente , Encefalopatias/diagnóstico por imagem , China , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/etiologia
8.
BMC Biol ; 21(1): 124, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226238

RESUMO

BACKGROUND: The axonemal microtubules of primary cilium undergo a conserved protein posttranslational modification (PTM) - polyglutamylation. This reversible procedure is processed by tubulin tyrosine ligase-like polyglutamylases to form secondary polyglutamate side chains, which are metabolized by the 6-member cytosolic carboxypeptidase (CCP) family. Although polyglutamylation modifying enzymes have been linked to ciliary architecture and motility, it was unknown whether they also play a role in ciliogenesis. RESULTS: In this study, we found that CCP5 expression is transiently downregulated upon the initiation of ciliogenesis, but recovered after cilia are formed. Overexpression of CCP5 inhibited ciliogenesis, suggesting that a transient downregulation of CCP5 expression is required for ciliation initiation. Interestingly, the inhibitory effect of CCP5 on ciliogenesis does not rely on its enzyme activity. Among other 3 CCP members tested, only CCP6 can similarly suppress ciliogenesis. Using CoIP-MS analysis, we identified a protein that potentially interacts with CCP - CP110, a known negative regulator of ciliogenesis, whose degradation at the distal end of mother centriole permits cilia assembly. We found that both CCP5 and CCP6 can modulate CP110 level. Particularly, CCP5 interacts with CP110 through its N-terminus. Loss of CCP5 or CCP6 led to the disappearance of CP110 at the mother centriole and abnormally increased ciliation in cycling RPE-1 cells. Co-depletion of CCP5 and CCP6 synergized this abnormal ciliation, suggesting their partially overlapped function in suppressing cilia formation in cycling cells. In contrast, co-depletion of the two enzymes did not further increase the length of cilia, although CCP5 and CCP6 differentially regulate polyglutamate side-chain length of ciliary axoneme and both contribute to limiting cilia length, suggesting that they may share a common pathway in cilia length control. Through inducing the overexpression of CCP5 or CCP6 at different stages of ciliogenesis, we further demonstrated that CCP5 or CCP6 inhibited cilia formation before ciliogenesis, while shortened the length of cilia after cilia formation. CONCLUSION: These findings reveal the dual role of CCP5 and CCP6. In addition to regulating cilia length, they also retain CP110 level to suppress cilia formation in cycling cells, pointing to a novel regulatory mechanism for ciliogenesis mediated by demodifying enzymes of a conserved ciliary PTM, polyglutamylation.


Assuntos
Carboxipeptidases , Cílios , Proteínas Associadas aos Microtúbulos , Células HEK293 , Humanos , Carboxipeptidases/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Cílios/fisiologia , Microtúbulos
9.
Microb Ecol ; 86(2): 1023-1034, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36471016

RESUMO

Soil water stress (WS) affects the decomposition of soil organic carbon (SOC) and carbon (C) emissions. Glomalin, released by arbuscular mycorrhizal fungi into soil that has been defined as glomalin-related soil protein (GRSP), is an important pool of SOC, with hydrophobic characteristics. We hypothesized that mycorrhizal fungi have a positive effect on SOC pools under soil WS for C sequestration in GRSP secreted by extraradical mycorrhizal hyphae. A microsystem was used to establish a root chamber (co-existence of roots and extraradical mycorrhizal hyphae) and a hyphal chamber (the presence of extraradical mycorrhizal hyphae) to study changes in plant growth, leaf water potential, soil aggregate stability, SOC, GRSP, C concentrations in GRSP (CGRSP), and the contribution of CGRSP to SOC after inoculating Rhizophagus intraradices with trifoliate orange (Poncirus trifoliata) in the root chamber under adequate water (AW) and WS. Inoculation with R. intraradices alleviated negative effects on leaf water potential and plant growth after 7 weeks of WS. Soil WS decreased SOC and mean weight diameter (MWD), while AMF inoculation led to an increase in SOC and MWD in both chambers, with the most prominent increase in the hyphal chamber under WS. The C concentration in easily extractable GRSP (EE-GRSP) and difficultly extractable GRSP (DE-GRSP) was 7.32 - 12.57 and 24.90 - 32.60 mg C/g GRSP, respectively. WS reduced CGRSP, while AMF mitigated the reduction. Extraradical mycorrhizal hyphae increased GRSP production and CGRSP, along with a more prominent increase in DE-GRSP under WS than under AW. Extraradical mycorrhizal hyphae increased the contribution of CDE-GRSP to SOC only under WS. CEE-GRSP and CDE-GRSP were significantly positively correlated with SOC and MWD. It is concluded that extraradical mycorrhizal hyphae prominently promoted C sequestration of recalcitrant DE-GRSP under soil WS, thus contributing more organic C accumulation and preservation in aggregates and soil C pool.


Assuntos
Micorrizas , Solo/química , Hifas , Sequestro de Carbono , Carbono/metabolismo , Desidratação/metabolismo , Proteínas Fúngicas/metabolismo , Glicoproteínas/metabolismo
10.
Parasitology ; 150(7): 623-630, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971298

RESUMO

In recent years, bat-associated pathogens, such as 2019 novel coronavirus, have been ravaging the world, and ectoparasites of bats have received increasing attention. Penicillidia jenynsii is a member of the family Nycteribiidae which is a group of specialized ectoparasites of bats. In this study, the complete mitochondrial genome of P. jenynsii was sequenced for the first time and a comprehensive phylogenetic analysis of the superfamily Hippoboscoidea was conducted. The complete mitochondrial genome of P. jenynsii is 16 165 base pairs (bp) in size, including 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and 1 control region. The phylogenetic analysis based on 13 PCGs of the superfamily Hippoboscoidea known from the NCBI supported the monophyly of the family Nycteribiidae, and the family Nycteribiidae was a sister group with the family Streblidae. This study not only provided molecular data for the identification of P. jenynsii, but also provided a reference for the phylogenetic analysis of the superfamily Hippoboscoidea.


Assuntos
COVID-19 , Quirópteros , Dípteros , Genoma Mitocondrial , Animais , Dípteros/genética , Filogenia , Quirópteros/parasitologia
11.
Dev Med Child Neurol ; 65(5): 640-654, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36062920

RESUMO

AIM: To describe chronic pain in Duchenne muscular dystrophy (DMD) from children's/adolescents' perspectives, explore patient variables associated with self-reported pain, and examine the relationship between chronic pain, psychological functioning, and health-related quality of life (HRQoL). METHOD: This observational study included a paediatric cohort (aged 8-18 years; median age 9 years 4 months) with DMD under multidisciplinary care (n = 45). Clinical data of the latest visit were extracted from the electronic health record and assessment of pain, psychological distress, and HRQoL were performed during the same visit. RESULTS: Thirty-two patients reported pain during the previous 4 weeks, and 18 reported persistent or recurrent chronic pain. Average pain intensity of chronic pain was mild, with regions of the legs (n = 12), lower back (n = 6), hips (n = 6), and shoulder (n = 6) most frequently affected. Older age, higher body mass index, being non-ambulatory, wheelchair dependency, and spinal deformities were contextual variables related to the presence of chronic pain. Furthermore, chronic pain was significantly associated with psychological distress and reduced HRQoL in paediatric patients with DMD. INTERPRETATION: Chronic pain in paediatric DMD is frequent and widespread, highlighting the need for pain to be addressed in the routine care of affected young people. Chronic pain may make a significant contribution to psychological distress and impaired HRQoL in paediatric patients with DMD. WHAT THIS PAPER ADDS: Chronic pain differs in aetiology, scope, and nature compared with acute pain in paediatric Duchenne muscular dystrophy (DMD). Older age, higher body mass index, being non-ambulatory, wheelchair dependency, and spinal deformities are important patient variables. Chronic pain is significantly associated with psychological distress and reduced health-related quality of life in paediatric DMD.


Assuntos
Dor Crônica , Distrofia Muscular de Duchenne , Angústia Psicológica , Masculino , Adolescente , Humanos , Criança , Qualidade de Vida/psicologia , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/psicologia , Dor Crônica/etiologia , Autorrelato
12.
BMC Pulm Med ; 23(1): 27, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653805

RESUMO

OBJECTIVES: Pulmonary lesion is frequently seen in ANCA-associated vasculitis (AAV) patients primarily due to AAV lung involvement or infection, which are hard to differentiate due to their high similarity in clinical manifestations. We aimed to analyze the clinical features of pulmonary lesions consequent to AAV involvement or infection in AAV patients and further identify the markers for differential diagnosis. METHODS: 140 AAV patients who admitted to the Renmin Hospital of Wuhan University from January 2016 to July 2021 were included in this study. According to the nature of lung conditions, these patients were divided into the non-pulmonary lesion group, the lung infection group and the non-pulmonary infection group, and their demographics, clinical symptoms, imaging features, as well as laboratory findings were compared. A receiver operating characteristic (ROC) curve was drawn, and the diagnostic efficacy of single biomarker and composite biomarkers on pulmonary infection was then evaluated. RESULTS: The patients in the lung infection group were significantly older than those in the no lesion group (63.19 ± 14.55 vs 54.82 ± 15.08, p = 0.022). Patients in the lung infection group presented more frequent symptoms and more obvious pulmonary image findings. Compared with patients in the non-pulmonary infection group, patients in the lung infection group showed a higher symptom incidence of fever, chest tightness, cough and expectoration, and hemoptysis (52.94% vs 16.00%, 61.76% vs 40.00%, 72.06% vs 46.00%, 27.94% vs 8.00%, p < 0.05, respectively), and more changes in pulmonary CT scanning images in terms of patched/striped compact opacity, alveolar hemorrhage, bronchiectasis, pleural effusion, as well as mediastinal lymphadenopathy (89.71% vs 52.00%, 11.76% vs 2.00%, 22.06% vs 8.00%, 50.00% vs 20.00%, 48.53% vs 24.00%, p < 0.05, respectively). In addition, patients in the lung infection group had significantly higher levels of serum pro-calcitonin (PCT), C-reactive protein (CRP), amyloid A (SAA), blood neutrophil-to-lymphocyte ratio (NLCR), erythrocyte sedimentation rate (ESR), as well as Birmingham vasculitis activity score (BVAS) than patients in the other two groups (p < 0.05). Among all biomarkers, PCT exhibited the highest diagnostic efficacy (0.928; 95%CI 0.89-0.97) for pulmonary infected AAV patients at a cut-off score of 0.235 ng/ml with 85.3% sensitivity and 84% specificity. Moreover, the composite biomarker of PCT-CRP-NLCR showed more diagnostic efficacy (0.979; 95% CI 0.95-1.00) in distinguishing the infectious and non-infectious lung injuries in AAV patients. CONCLUSIONS: AAV patients with lung infection manifested more clinical symptoms and prominent lung image changes. The PCT and composite biomarker PCT-CRP-NLCR showed high diagnostic efficacy for a lung infection in AAV patients. Pulmonary lesion caused by either infection or AAV involvement is commonly seen and difficult to distinguish. We aim to identify the biomarkers that can be applied in the differentiation diagnosis of pulmonary lesions in AAV patients.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Humanos , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/complicações , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Biomarcadores , Proteína C-Reativa/metabolismo , Pró-Calcitonina , Pulmão/patologia
13.
Clin Rehabil ; 37(4): 569-582, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36285505

RESUMO

OBJECTIVE: This study analyzed the 32-item Motor Function Measure in a cohort of ambulatory patients with Duchenne muscular dystrophy using Rasch measurement methods. DESIGN: This is a psychometric study. SETTING: Rehabilitation centre of a large public children's hospital in Shenzhen, China. PARTICIPANTS: Data from 176 genetically confirmed ambulant patients with Duchenne muscular dystrophy (mean age 7.3 years, SD 2.3 years, range 3.1-13.1 years) were analyzed. RESULTS: Rasch analyses supported the Motor Function Measure domain D1 as a reliable (person reliability = 0.88, person separation index = 2.71) and valid (acceptable targeting, little misfit, minimal category disordering) measure in ambulant patients with Duchenne muscular dystrophy. Remodelling the domain D1 by collapsing item 25 from 4 to 3 response categories addressed the problematic disordered thresholds, resulting in a rebuilt domain D1 with enhanced measurement properties. However, findings for domains D2 and D3 did not fulfil most Rasch model expectations. There were disordered thresholds for most items in domains D2 and D3, with low reliability coefficients, item mistargeting and misfit, and large ceiling effects. CONCLUSION: Rasch analyses confirmed that the Motor Function Measure domain D1 was reliable and valid and provided a unidimensional measure for motor function in ambulant Duchenne muscular dystrophy patients. Accuracy of measurement had been enhanced through remodelling, and a rebuilt domain D1 with category collapsing for item 25 was proposed. The analysis revealed multiple limitations of the domains D2 and D3 that certain essential psychometrics were poorly met and, therefore, should be used with caution in this patient group.


Assuntos
Distrofia Muscular de Duchenne , Criança , Humanos , Pré-Escolar , Adolescente , Distrofia Muscular de Duchenne/reabilitação , Reprodutibilidade dos Testes , Psicometria/métodos , China , Inquéritos e Questionários
14.
BMC Pediatr ; 23(1): 406, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596542

RESUMO

BACKGROUND: The sedative dexmedetomidine has been shown to reduce mortality in adult patients with severe sepsis, but it is not known whether children benefit. This study explored the effects of dexmedetomidine on the outcomes of children with severe sepsis with mechanical ventilation. METHODS: In this retrospective cohort study, children with severe sepsis requiring mechanical ventilation from 2016 to 2020 were categorized as dexmedetomidine and non-dexmedetomidine group. The propensity score matching was performed to match cases in both groups. The primary outcome was 28-day mortality, and the secondary outcomes were acute kidney injury, ventilator-free days, lengths of PICU and hospital stays. The Kaplan-Meier method and was the log-rank test used to estimate the 28-day mortality rate and assess between-group differences. RESULTS: In total, 250 patients were eligible patients: 138 in the dexmedetomidine group and 112 in the non-dexmedetomidine group. After 1:1 propensity score matching, 61 children in each group. dexmedetomidine group showed more lower 28-day mortality (9.84% vs. 26.23%, P = 0.008). During the 7-day observation period after PICU admission, the dexmedetomidine group showed significantly lower neurological and renal sub-scores at day 7 and serum creatinine level at day 3 and day 7. There were no statistical differences in the incidence of acute kidney injury, ventilator-free days, lengths of PICU and hospital stays between the two groups. CONCLUSIONS: dexmedetomidine treatment in children with severe sepsis is associated with better outcomes and should therefore be considered for the sedation strategy.


Assuntos
Injúria Renal Aguda , Anestesia , Sepse , Adulto , Humanos , Criança , Respiração Artificial , Estudos Retrospectivos , Injúria Renal Aguda/terapia , Sepse/tratamento farmacológico
15.
Proc Natl Acad Sci U S A ; 117(13): 7255-7262, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179668

RESUMO

Disease outbreaks and pathogen introductions can have significant effects on host populations, and the ability of pathogens to persist in the environment can exacerbate disease impacts by fueling sustained transmission, seasonal epidemics, and repeated spillover events. While theory suggests that the presence of an environmental reservoir increases the risk of host declines and threat of extinction, the influence of reservoir dynamics on transmission and population impacts remains poorly described. Here we show that the extent of the environmental reservoir explains broad patterns of host infection and the severity of disease impacts of a virulent pathogen. We examined reservoir and host infection dynamics and the resulting impacts of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome, in 39 species of bats at 101 sites across the globe. Lower levels of pathogen in the environment consistently corresponded to delayed infection of hosts, fewer and less severe infections, and reduced population impacts. In contrast, an extensive and persistent environmental reservoir led to early and widespread infections and severe population declines. These results suggest that continental differences in the persistence or decay of P. destructans in the environment altered infection patterns in bats and influenced whether host populations were stable or experienced severe declines from this disease. Quantifying the impact of the environmental reservoir on disease dynamics can provide specific targets for reducing pathogen levels in the environment to prevent or control future epidemics.


Assuntos
Quirópteros/microbiologia , Reservatórios de Doenças/microbiologia , Micoses/epidemiologia , Animais , Ascomicetos/patogenicidade , Epidemias , Hibernação , Micoses/microbiologia , Nariz/microbiologia , Doenças Nasais/epidemiologia , Doenças Nasais/microbiologia , Dinâmica Populacional , Estações do Ano
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(2): 177-180, 2023 Feb 10.
Artigo em Zh | MEDLINE | ID: mdl-36709936

RESUMO

OBJECTIVE: To explore the clinical features and genetic basis for a child with early-onset Isolated sulfite oxidase deficiency (ISOD). METHODS: A child with ISOD who was admitted to Weihai Hospital Affiliated to Qingdao University on May 10, 2020 was selected as the study subject. Clinical data of the child was analyzed. The child and her parents were subjected to trio-whole exome sequencing, and candidate variants were verified by Sanger sequencing. RESULTS: The female neonate was transferred to the intensive care unit due to "secondary pollution of amniotic fluid and laborious breathing for 11 minutes", and had developed frequent convulsions. Genetic testing revealed that she has harbored c.1200C>G and c.188G>A compound heterozygous variants of the SUOX gene, which were inherited from her mother and father, respectively. The c.1200C>G has been described previously and was rated as pathogenic based on guidelines from the American College of Medical Genetics and Genomics, whilst the c.188G>A variant was unreported previously and rated as variant of unknown significance. CONCLUSION: The compound heterozygous variants of the SUOX gene probably underlay the ISOD in this child. Above finding has enriched the spectrum of SUOX gene variants and provided a basis for the clinical diagnosis and genetic counseling.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Sulfito Oxidase , Feminino , Humanos , Recém-Nascido , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Aconselhamento Genético , Testes Genéticos , Mutação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Sulfito Oxidase/genética
17.
Nature ; 531(7594): 323-8, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26958831

RESUMO

The repair and regeneration of tissues using endogenous stem cells represents an ultimate goal in regenerative medicine. To our knowledge, human lens regeneration has not yet been demonstrated. Currently, the only treatment for cataracts, the leading cause of blindness worldwide, is to extract the cataractous lens and implant an artificial intraocular lens. However, this procedure poses notable risks of complications. Here we isolate lens epithelial stem/progenitor cells (LECs) in mammals and show that Pax6 and Bmi1 are required for LEC renewal. We design a surgical method of cataract removal that preserves endogenous LECs and achieves functional lens regeneration in rabbits and macaques, as well as in human infants with cataracts. Our method differs conceptually from current practice, as it preserves endogenous LECs and their natural environment maximally, and regenerates lenses with visual function. Our approach demonstrates a novel treatment strategy for cataracts and provides a new paradigm for tissue regeneration using endogenous stem cells.


Assuntos
Catarata/terapia , Cristalino/citologia , Cristalino/fisiologia , Recuperação de Função Fisiológica , Regeneração/fisiologia , Células-Tronco/citologia , Visão Ocular/fisiologia , Animais , Catarata/congênito , Catarata/patologia , Catarata/fisiopatologia , Extração de Catarata , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Homeostase , Humanos , Macaca , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/metabolismo
18.
Allergol Immunopathol (Madr) ; 50(6): 128-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36335456

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common and recurrent skin disease. The first onset of AD in adults is known as adult-onset atopic dermatitis (AOAD). Gut microbiota is closely associated with AD, and the "gut-skin" axis is considered as a novel target for prevention of AD. However, only a few studies have analyzed AOAD, particularly the studies that compared differences in intestinal flora between AOAD and persistent AD patients. OBJECTIVE: To investigate main specificities of intestinal microbiota in AOAD patients, particularly comparing with persistent AD patients. METHODS: A comprehensive taxonomic and functional analysis of gut microbiota in 10 healthy, 12 AOAD, and 10 persistent AD patients was done by using bacterial 16S ribosomal RNA (rRNA) gene analysis. Chao1 and Shannon diversity indices were measured to analyze alpha diversity, and the linear discriminant analysis (LDA) effect size (LEfSe) algorithm was applied to identify differences in genus. RESULTS: The alpha diversity of gut microbiota in AOAD patients was decreased, with Escherichia-shigella (15.8%) being the predominant genus of AOAD group. Agathobacter and Dorea in AOAD patients were significantly reduced, whereas the relative level of Bacteroides pectinophilus group was remarkably elevated compared with healthy volunteers and persistent AD patients. CONCLUSION: The present study revealed differences in intestinal flora between AOAD, healthy adults, and non-adult onset of AD, and explored differential dominant bacteria between AOAD and persistent AD patients.


Assuntos
Dermatite Atópica , Microbioma Gastrointestinal , Humanos , Dermatite Atópica/microbiologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Pele , Bactérias
19.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613903

RESUMO

JMJD8 is a protein from the JMJD family that only has the JmjC domain. Studies on the function of JMJD8 indicate that JMJD8 is involved in signaling pathways, including AKT/NF-κB, and thus affects cell proliferation and development. Here, we reported the activity of JMJD8 as a non-histone demethylase. We investigated the demethylation of JMJD8 on trimethylated lysine of AKT1 in vivo and in vitro using trimethylated AKT1 short peptide and AKT1 protein, and we tracked the regulation of JMJD8 on AKT1 activity at the cellular level. The results showed that JMJD8, a mini lysine demethylase, altered AKT1 protein function via changing its degree of methylation.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Lisina , Lisina/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Transdução de Sinais , Metilação , NF-kappa B/metabolismo
20.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36613786

RESUMO

Vascular endothelial injury is important in anthracycline-induced cardiotoxicity. Anthracyclines seriously damage the mitochondrial function and mitochondrial homeostasis. In this study, we investigated the damage of epirubicin to vascular endothelial cells and the protective role of metformin from the perspective of mitochondrial homeostasis. We found that epirubicin treatment resulted in DNA double-strand breaks (DSB), elevated reactive oxygen species (ROS) production, and excessive Angiotensin II release in HUVEC cells. Pretreatment with metformin significantly mitigated the injuries caused by epirubicin. In addition, inhibited expression of Mitochondrial transcription factor A (TFAM) and increased mitochondria fragmentation were observed in epirubicin-treated cells, which were partially resumed by metformin pretreatment. In epirubicin-treated cells, knockdown of TFAM counteracted the attenuated DSB formation due to metformin pretreatment, and inhibition of mitochondrial fragmentation with Mdivi-1 decreased DSB formation but increased TFAM expression. Furthermore, epirubicin treatment promoted mitochondrial fragmentation by stimulating the expression of Dynamin-1-like protein (DRP1) and inhibiting the expression of Optic atrophy-1(OPA1) and Mitofusin 1(MFN1), which could be partially prevented by metformin. Finally, we found metformin could increase TFAM expression and decrease DRP1 expression in epirubicin-treated HUVEC cells by upregulating the expression of calcineurin/Transcription factor EB (TFEB). Taken together, this study provided evidence that metformin treatment was an effective way to mitigate epirubicin-induced endothelial impairment by maintaining mitochondrial homeostasis.


Assuntos
Metformina , Humanos , Epirubicina/efeitos adversos , Metformina/farmacologia , Metformina/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Homeostase , Dinâmica Mitocondrial , Dinaminas/genética , Dinaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA