Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891814

RESUMO

Copy number variation (CNV) serves as a significant source of genetic diversity in mammals and exerts substantial effects on various complex traits. Pingliang red cattle, an outstanding indigenous resource in China, possess remarkable breeding value attributed to their tender meat and superior marbling quality. However, the genetic mechanisms influencing carcass and meat quality traits in Pingliang red cattle are not well understood. We generated a comprehensive genome-wide CNV map for Pingliang red cattle using the GGP Bovine 100K SNP chip. A total of 755 copy number variable regions (CNVRs) spanning 81.03 Mb were identified, accounting for approximately 3.24% of the bovine autosomal genome. Among these, we discovered 270 potentially breed-specific CNVRs in Pingliang red cattle, including 143 gains, 73 losses, and 54 mixed events. Functional annotation analysis revealed significant associations between these specific CNVRs and important traits such as carcass and meat quality, reproduction, exterior traits, growth traits, and health traits. Additionally, our network and transcriptome analysis highlighted CACNA2D1, CYLD, UBXN2B, TG, NADK, and ITGA9 as promising candidate genes associated with carcass weight and intramuscular fat deposition. The current study presents a genome-wide CNV map in Pingliang red cattle, highlighting breed-specific CNVRs, and transcriptome findings provide valuable insights into the underlying genetic characteristics of Pingliang red cattle. These results offer potential avenues for enhancing meat quality through a targeted breeding program.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Carne , Animais , Bovinos/genética , Variações do Número de Cópias de DNA/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fenótipo , Cruzamento , Genoma , Qualidade dos Alimentos , Característica Quantitativa Herdável
2.
Genomics ; 113(5): 3325-3336, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314829

RESUMO

Carcass merits are widely considered as economically important traits affecting beef production in the beef cattle industry. However, the genetic basis of carcass traits remains to be well understood. Here, we applied multiple methods, including the Composite of Likelihood Ratio (CLR) and Genome-wide Association Study (GWAS), to explore the selection signatures and candidate variants affecting carcass traits. We identified 11,600 selected regions overlapping with 2214 candidate genes, and most of those were enriched in binding and gene regulation. Notably, we identified 66 and 110 potential variants significantly associated with carcass traits using single-trait and multi-traits analyses, respectively. By integrating selection signatures with single and multi-traits associations, we identified 12 and 27 putative genes, respectively. Several highly conserved missense variants were identified in OR5M13D, NCAPG, and TEX2. Our study supported polygenic genetic architecture of carcass traits and provided novel insights into the genetic basis of complex traits in beef cattle.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Animais , Bovinos/genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética
3.
BMC Genomics ; 22(1): 678, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548021

RESUMO

BACKGROUND: Genomic regions with a high frequency of runs of homozygosity (ROH) are related to important traits in farm animals. We carried out a comprehensive analysis of ROH and evaluated their association with production traits using the BovineHD (770 K) SNP array in Chinese Simmental beef cattle. RESULTS: We detected a total of 116,953 homozygous segments with 2.47Gb across the genome in the studied population. The average number of ROH per individual was 99.03 and the average length was 117.29 Mb. Notably, we detected 42 regions with a frequency of more than 0.2. We obtained 17 candidate genes related to body size, meat quality, and reproductive traits. Furthermore, using Fisher's exact test, we found 101 regions were associated with production traits by comparing high groups with low groups in terms of production traits. Of those, we identified several significant regions for production traits (P < 0.05) by association analysis, within which candidate genes including ECT2, GABRA4, and GABRB1 have been previously reported for those traits in beef cattle. CONCLUSIONS: Our study explored ROH patterns and their potential associations with production traits in beef cattle. These results may help to better understand the association between production traits and genome homozygosity and offer valuable insights into managing inbreeding by designing reasonable breeding programs in farm animals.


Assuntos
Endogamia , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , China , Consenso , Genótipo , Homozigoto
4.
BMC Genomics ; 20(1): 494, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31200634

RESUMO

BACKGROUND: Understanding the population structure and genetic bases of well-adapted cattle breeds to local environments is one of the most essential tasks to develop appropriate genetic improvement programs. RESULTS: We performed a comprehensive study to investigate the population structure, divergence and selection signatures at genome-wide level in diverse Chinese local cattle using Bovine HD SNPs array, including two breeds from North China, one breed from Northwest China, three breeds from Southwest China and two breeds from South China. Population genetic analyses revealed the genetic structures of these populations were mostly related to the geographic locations. Notably, we detected 294 and 1263 candidate regions under selection using the di and iHS approaches, respectively. A series of group-specific and breed-specific candidate genes were identified, which are involved in immune response, sexual maturation, stature related, birth and bone weight, embryonic development, coat colors and adaptation. Furthermore, haplotype diversity and network pattern for candidate genes, including LPGAT1, LCORL, PPP1R8, RXFP2 and FANCA, suggest that these genes have been under differential selection pressures in various environmental conditions. CONCLUSIONS: Our results shed insights into diverse selection during breed formation in Chinese local cattle. These findings may promote the application of genome-assisted breeding for well-adapted local breeds with economic and ecological importance.


Assuntos
Adaptação Fisiológica/genética , Variação Genética , Genômica , Seleção Genética , Animais , Bovinos , Evolução Molecular , Haplótipos , Heterozigoto , Filogenia
5.
J Therm Biol ; 81: 12-19, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30975409

RESUMO

Our study evaluated the physiological responses to acute heat stress in rats via body temperature and tissue corticosterone levels, and investigated the relative tissue response to heat stress based on corticosterone. Body temperature of rats under 22 °C (control) and 42 °C for 30 (H30), 60 (H60) and 120 min (H120) was measured. Correspondingly, corticosterone was analyzed in 11 tissues (adrenal, brain, heart, kidney, liver, lung, leg muscle, blood, stomach, spleen and small intestine). Analysis of variance and correlations were conducted on body temperature and corticosterone levels. The receiver operating characteristic (ROC) analyzed the thermo-sensitivity via corticosterone. Body temperature of rats in H30, H60 and H120 groups were higher (P < 0.05) than the control. Compared to the control, corticosterone levels of heart, stomach and small intestine at H30, corticosterone levels in adrenal, leg muscle and stomach at H60, and corticosterone levels in adrenal, heart, lung, stomach and small intestine at H120 differed (P < 0.05). The corticosterone in lung tissue was an excellent indicator of acute heat stress, with an area under the curve (AUC) of 1.00 at H60 and H120. In order to improve the prediction of acute heat stress, models combining corticosterone levels of multiple tissues reached an AUC of 1.00 for H30, and the sensitivity increased to 100% for H60 and H120. In conclusion, changes in the patterns and thermosensitivity of corticosterone levels associated with the duration of heat stress across body tissues were evidenced. The single and multi-organizational corticosterone models serve as indicators for evaluating heat stress across different time periods.


Assuntos
Regulação da Temperatura Corporal , Corticosterona/metabolismo , Resposta ao Choque Térmico , Glândulas Suprarrenais , Animais , Encéfalo/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Temperatura Alta , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Miocárdio/metabolismo , Ratos Sprague-Dawley , Baço/metabolismo
6.
BMC Bioinformatics ; 19(1): 3, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298666

RESUMO

BACKGROUND: Running multiple-chain Markov Chain Monte Carlo (MCMC) provides an efficient parallel computing method for complex Bayesian models, although the efficiency of the approach critically depends on the length of the non-parallelizable burn-in period, for which all simulated data are discarded. In practice, this burn-in period is set arbitrarily and often leads to the performance of far more iterations than required. In addition, the accuracy of genomic predictions does not improve after the MCMC reaches equilibrium. RESULTS: Automatic tuning of the burn-in length for running multiple-chain MCMC was proposed in the context of genomic predictions using BayesA and BayesCπ models. The performance of parallel computing versus sequential computing and tunable burn-in MCMC versus fixed burn-in MCMC was assessed using simulation data sets as well by applying these methods to genomic predictions of a Chinese Simmental beef cattle population. The results showed that tunable burn-in parallel MCMC had greater speedups than fixed burn-in parallel MCMC, and both had greater speedups relative to sequential (single-chain) MCMC. Nevertheless, genomic estimated breeding values (GEBVs) and genomic prediction accuracies were highly comparable between the various computing approaches. When applied to the genomic predictions of four quantitative traits in a Chinese Simmental population of 1217 beef cattle genotyped by an Illumina Bovine 770 K SNP BeadChip, tunable burn-in multiple-chain BayesCπ (TBM-BayesCπ) outperformed tunable burn-in multiple-chain BayesCπ (TBM-BayesA) and Genomic Best Linear Unbiased Prediction (GBLUP) in terms of the prediction accuracy, although the differences were not necessarily caused by computational factors and could have been intrinsic to the statistical models per se. CONCLUSIONS: Automatically tunable burn-in multiple-chain MCMC provides an accurate and cost-effective tool for high-performance computing of Bayesian genomic prediction models, and this algorithm is generally applicable to high-performance computing of any complex Bayesian statistical model.


Assuntos
Genoma , Modelos Genéticos , Animais , Teorema de Bayes , Bovinos , China , Cadeias de Markov , Método de Monte Carlo , Polimorfismo de Nucleotídeo Único
7.
BMC Genomics ; 18(1): 464, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615065

RESUMO

BACKGROUND: Fatty acid composition of muscle is an important trait contributing to meat quality. Recently, genome-wide association study (GWAS) has been extensively used to explore the molecular mechanism underlying important traits in cattle. In this study, we performed GWAS using high density SNP array to analyze the association between SNPs and fatty acids and evaluated the accuracy of genomic prediction for fatty acids in Chinese Simmental cattle. RESULTS: Using the BayesB method, we identified 35 and 7 regions in Chinese Simmental cattle that displayed significant associations with individual fatty acids and fatty acid groups, respectively. We further obtained several candidate genes which may be involved in fatty acid biosynthesis including elongation of very long chain fatty acids protein 5 (ELOVL5), fatty acid synthase (FASN), caspase 2 (CASP2) and thyroglobulin (TG). Specifically, we obtained strong evidence of association signals for one SNP located at 51.3 Mb for FASN using Genome-wide Rapid Association Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approaches. Also, region-based association test identified multiple SNPs within FASN and ELOVL5 for C14:0. In addition, our result revealed that the effectiveness of genomic prediction for fatty acid composition using BayesB was slightly superior over GBLUP in Chinese Simmental cattle. CONCLUSIONS: We identified several significantly associated regions and loci which can be considered as potential candidate markers for genomics-assisted breeding programs. Using multiple methods, our results revealed that FASN and ELOVL5 are associated with fatty acids with strong evidence. Our finding also suggested that it is feasible to perform genomic selection for fatty acids in Chinese Simmental cattle.


Assuntos
Ácidos Graxos/química , Estudo de Associação Genômica Ampla , Genômica , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Carne Vermelha , Animais , Bovinos , Desequilíbrio de Ligação , Fenótipo
8.
Asian-Australas J Anim Sci ; 28(4): 467-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25656186

RESUMO

Improvement for carcass traits related to beef quality is the key concern in beef production. Recent reports found that epigenetics mediates the interaction of individuals with environment and nutrition. The present study was designed to analyze the genetic effect of single nucleotide polymorphisms (SNPs) in seven epigenetic-related genes (DNMT1, DNMT3a, DNMT3b, DNMT3L, Ago1, Ago2, and HDAC5) and two meat quality candidate genes (CAPN1 and PRKAG3) on fourteen carcass traits related to beef quality in a Snow Dragon beef population, and also to identify SNPs in a total of fourteen cattle populations. Sixteen SNPs were identified and genotyped in 383 individuals sampled from the 14 cattle breeds, which included 147 samples from the Snow Dragon beef population. Data analysis showed significant association of 8 SNPs within 4 genes related to carcass and/or meat quality traits in the beef populations. SNP1 (13154420A>G) in exon 17 of DNMT1 was significantly associated with rib-eye width and lean meat color score (p<0.05). A novel SNP (SNP4, 76198537A>G) of DNMT3a was significantly associated with six beef quality traits. Those individuals with the wild-type genotype AA of DNMT3a showed an increase in carcass weight, chilled carcass weight, flank thicknesses, chuck short rib thickness, chuck short rib score and in chuck flap weight in contrast to the GG genotype. Five out of six SNPs in DNMT3b gene were significantly associated with three beef quality traits. SNP15 (45219258C>T) in CAPN1 was significantly associated with chuck short rib thickness and lean meat color score (p<0.05). The significant effect of SNP15 on lean meat color score individually and in combination with each of other 14 SNPs qualify this SNP to be used as potential marker for improving the trait. In addition, the frequencies of most wild-type alleles were higher than those of the mutant alleles in the native and foreign cattle breeds. Seven SNPs were identified in the epigenetic-related genes. The SNP15 in CAPN1 could be used as a powerful genetic marker in selection programs for beef quality improvement in the Snow Dragon Beef population.

9.
Genes (Basel) ; 15(2)2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397242

RESUMO

Numerous studies have shown that combining populations from similar or closely related genetic breeds improves the accuracy of genomic predictions (GP). Extensive experimentation with diverse Bayesian and genomic best linear unbiased prediction (GBLUP) models have been developed to explore multi-breed genomic selection (GS) in livestock, ultimately establishing them as successful approaches for predicting genomic estimated breeding value (GEBV). This study aimed to assess the effectiveness of using BayesR and GBLUP models with linkage disequilibrium (LD)-weighted genomic relationship matrices (GRMs) for genomic prediction in three different beef cattle breeds to identify the best approach for enhancing the accuracy of multi-breed genomic selection in beef cattle. Additionally, a comparison was conducted to evaluate the predictive precision of different marker densities and genetic correlations among the three breeds of beef cattle. The GRM between Yunling cattle (YL) and other breeds demonstrated modest affinity and highlighted a notable genetic concordance of 0.87 between Chinese Wagyu (WG) and Huaxi (HX) cattle. In the within-breed GS, BayesR demonstrated an advantage over GBLUP. The prediction accuracies for HX cattle using the BayesR model were 0.52 with BovineHD BeadChip data (HD) and 0.46 with whole-genome sequencing data (WGS). In comparison to the GBLUP model, the accuracy increased by 26.8% for HD data and 9.5% for WGS data. For WG and YL, BayesR doubled the within-breed prediction accuracy to 14.3% from 7.1%, outperforming GBLUP across both HD and WGS datasets. Moreover, analyzing multiple breeds using genomic selection showed that BayesR consistently outperformed GBLUP in terms of predictive accuracy, especially when using WGS. For instance, in a mixed reference population of HX and WG, BayesR achieved a significant accuracy of 0.53 using WGS for HX, which was a substantial enhancement over the accuracies obtained with GBLUP models. The research further highlights the benefit of including various breeds in the reference group, leading to enhanced accuracy in predictions and emphasizing the importance of comprehensive genomic selection methods. Our research findings indicate that BayesR exhibits superior performance compared to GBLUP in multi-breed genomic prediction accuracy, achieving a maximum improvement of 33.3%, especially in genetically diverse breeds. The improvement can be attributed to the effective utilization of higher single nucleotide polymorphism (SNP) marker density by BayesR, resulting in enhanced prediction accuracy. This evidence conclusively demonstrates the significant impact of BayesR on enhancing genomic predictions in diverse cattle populations, underscoring the crucial role of genetic relatedness in selection methodologies. In parallel, subsequent studies should focus on refining GRM and exploring alternative models for GP.


Assuntos
Genoma , Genômica , Bovinos/genética , Animais , Teorema de Bayes , Genoma/genética , Genômica/métodos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética
10.
J Anim Sci Biotechnol ; 14(1): 78, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37165455

RESUMO

BACKGROUND: A detailed understanding of genetic variants that affect beef merit helps maximize the efficiency of breeding for improved production merit in beef cattle. To prioritize the putative variants and genes, we ran a comprehensive genome-wide association studies (GWAS) analysis for 21 agronomic traits using imputed whole-genome variants in Simmental beef cattle. Then, we applied expression quantitative trait loci (eQTL) mapping between the genotype variants and transcriptome of three tissues (longissimus dorsi muscle, backfat, and liver) in 120 cattle. RESULTS: We identified 1,580 association signals for 21 beef agronomic traits using GWAS. We then illuminated 854,498 cis-eQTLs for 6,017 genes and 46,970 trans-eQTLs for 1,903 genes in three tissues and built a synergistic network by integrating transcriptomics with agronomic traits. These cis-eQTLs were preferentially close to the transcription start site and enriched in functional regulatory regions. We observed an average of 43.5% improvement in cis-eQTL discovery using multi-tissue eQTL mapping. Fine-mapping analysis revealed that 111, 192, and 194 variants were most likely to be causative to regulate gene expression in backfat, liver, and muscle, respectively. The transcriptome-wide association studies identified 722 genes significantly associated with 11 agronomic traits. Via the colocalization and Mendelian randomization analyses, we found that eQTLs of several genes were associated with the GWAS signals of agronomic traits in three tissues, which included genes, such as NADSYN1, NDUFS3, LTF and KIFC2 in liver, GRAMD1C, TMTC2 and ZNF613 in backfat, as well as TIGAR, NDUFS3 and L3HYPDH in muscle that could serve as the candidate genes for economic traits. CONCLUSIONS: The extensive atlas of GWAS, eQTL, fine-mapping, and transcriptome-wide association studies aid in the suggestion of potentially functional variants and genes in cattle agronomic traits and will be an invaluable source for genomics and breeding in beef cattle.

11.
Animals (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889831

RESUMO

Despite significant advances of the bovine epigenome investigation, new evidence for the epigenetic basis of fetal cartilage development remains lacking. In this study, the chondrocytes were isolated from long bone tissues of bovine fetuses at 90 days. The Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) and transcriptome sequencing (RNA-seq) were used to characterize gene expression and chromatin accessibility profile in bovine chondrocytes. A total of 9686 open chromatin regions in bovine fetal chondrocytes were identified and 45% of the peaks were enriched in the promoter regions. Then, all peaks were annotated to the nearest gene for Gene Ontology (GO) and Kyoto Encylopaedia of Genes and Genomes (KEGG) analysis. Growth and development-related processes such as amide biosynthesis process (GO: 0043604) and translation regulation (GO: 006417) were enriched in the GO analysis. The KEGG analysis enriched endoplasmic reticulum protein processing signal pathway, TGF-ß signaling pathway and cell cycle pathway, which are closely related to protein synthesis and processing during cell proliferation. Active transcription factors (TFs) were enriched by ATAC-seq, and were fully verified with gene expression levels obtained by RNA-seq. Among the top50 TFs from footprint analysis, known or potential cartilage development-related transcription factors FOS, FOSL2 and NFY were found. Overall, our data provide a theoretical basis for further determining the regulatory mechanism of cartilage development in bovine.

12.
Genes (Basel) ; 14(12)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38137021

RESUMO

The Pingliang red cattle, an outstanding indigenous resource in China, possesses an exceptional breeding value attributed to its tender meat and superior marbling quality. Currently, research efforts have predominantly concentrated on exploring its maternal origin and conducting conventional phenotypic studies. However, there remains a lack of comprehensive understanding regarding its genetic basis. To address this gap, we conducted a thorough whole-genome analysis to investigate the population structure, phylogenetic relationships, and gene flows of this breed using genomic SNP chip data from 17 bovine breeds. The results demonstrate that Pingliang red cattle have evolved distinct genetic characteristics unique to this breed, clearly distinguishing it from other breeds. Based on the analysis of the population structure and phylogenetic tree, it can be classified as a hybrid lineage between Bos taurus and Bos indicus. Furthermore, Pingliang red cattle display a more prominent B. taurus pedigree in comparison with Jinnan, Qinchuan, Zaosheng, Nanyang, and Luxi cattle. Moreover, this study also revealed closer genetic proximity within the Chinese indigenous cattle breed, particularly Qinchuan cattle, which shares the longest identical by descent (IBD) fragment with Pingliang red cattle. Gene introgression analysis shows that Pingliang red cattle have undergone gene exchange with South Devon and Red Angus cattle from Europe. Admixture analysis revealed that the proportions of East Asian taurine and Chinese indicine in the ancestry of Pingliang red cattle are approximately 52.44% and 21.00%, respectively, while Eurasian taurine, European taurine, and Indian indicine account for approximately 17.55%, 7.27%, and 1.74%. Our findings unveil distinct genetic characteristics in Pingliang red cattle and attribute their origin to B. taurus and B. indicus ancestry, as well as contributions from Qinchuan cattle, South Devon, and Red Angus.


Assuntos
Variação Genética , Genoma , Animais , Bovinos/genética , Filogenia , Genoma/genética , Genômica , China
13.
Cell Prolif ; 55(5): e13219, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35362202

RESUMO

OBJECTIVES: Although major advances have been made in bovine epigenome study, the epigenetic basis for fetal skeletal muscle development still remains poorly understood. The aim is to recapitulated the time course of fetal skeletal muscle development in vitro, and explore the dynamic changes of chromatin accessibility and gene expression during bovine myoblasts proliferation and differentiation. METHODS: PDGFR- cells were isolated from bovine fetal skeletal muscle, then cultured and induced myogenic differentiation in vitro in a time-course study (P, D0, D2,and D4). The assay for transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were performed. RESULTS: Among the enriched transcriptional factors with high variability, we determined the effects of MAFF, ZNF384, and KLF6 in myogenesis using RNA interference (RNAi). In addition, we identified both stage-specific genes and chromatin accessibility regions to reveal the sequential order of gene expression, transcriptional regulatory, and signal pathways involved in bovine skeletal muscle development. Further investigation integrating chromatin accessibility and transcriptome data was conducted to explore cis-regulatory regions in line with gene expression. Moreover, we combined bovine GWAS results of growth traits with regulatory regions defined by chromatin accessibility, providing a suggestive means for a more precise annotation of genetic variants of bovine growth traits. CONCLUSION: Overall, these findings provide valuable information for understanding the stepwise regulatory mechanisms in skeletal muscle development and conducting beef cattle genetic improvement programs.


Assuntos
Cromatina , Desenvolvimento Muscular , Animais , Bovinos , Proliferação de Células , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Desenvolvimento Muscular/genética , Mioblastos , Fatores de Transcrição/genética
14.
Front Genet ; 13: 821406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309117

RESUMO

Rumen development is a crucial physiological challenge for ruminants. However, the molecular mechanism regulating rumen development has not been clearly elucidated. In this study, we investigated genes involved in rumen development in 13 rumen tissues from three developmental stages (birth, youth, and adult) using RNA sequencing. We identified that 6,048 genes were differentially expressed among three developmental stages. Using weighted correlation network analysis, we found that 12 modules were significantly associated with developmental stages. Functional annotation and protein-protein interaction (PPI) network analysis revealed that CCNB1, CCNB2, IGF1, IGF2, HMGCL, BDH1, ACAT1, HMGCS2, and CREBBP involved in rumen development. Integrated transcriptome with GWAS information of carcass weight (CW), stomach weight (SW), marbling score (MS), backfat thickness (BFT), ribeye area (REA), and lean meat weight (LMW), we found that upregulated DEGs (fold change 0∼1) in birth-youth comparison were significantly enriched with GWAS signals of MS, downregulated DEGs (fold change >3) were significantly enriched with GWAS signals of SW, and fold change 0∼1 up/downregulated DEGs in birth-adult comparison were significantly enriched with GWAS signals of CW, LMW, REA, and BFT. Furthermore, we found that GWAS signals for CW, LMW, and REA were enriched in turquoise module, and GWAS signals for CW was enriched in lightgreen module. Our study provides novel insights into the molecular mechanism underlying rumen development in cattle and highlights an integrative analysis for illustrating the genetic architecture of beef complex traits.

15.
Evol Appl ; 15(12): 2028-2042, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540636

RESUMO

Genomic prediction (GP) based on haplotype alleles can capture quantitative trait loci (QTL) effects and increase predictive ability because the haplotypes are expected to be in linkage disequilibrium (LD) with QTL. In this study, we constructed haploblocks using LD-based and the fixed number of single nucleotide polymorphisms (fixed-SNP) methods with Illumina BovineHD chip in beef cattle. To evaluate the performance of different haplotype block partitioning methods, we constructed haploblocks based on LD thresholds (from r 2 > 0.2 to r 2 > 0.8) and the number of fixed-SNPs (5, 10, 20). The performance of predictive methods for three carcass traits including liveweight (LW), dressing percentage (DP), and longissimus dorsi muscle weight (LDMW) was evaluated using three approaches (GBLUP and BayesB model based on the SNP, GHBLUP, and BayesBH models based on the haploblock, and GHBLUP+GBLUP and BayesBH+BayesB models based on the combined haploblock and the nonblocked SNPs, which were located between blocks). In this study, we found the accuracies of LD-based and fixed-SNP haplotype Bayesian methods outperformed the Bayesian models (up to 8.54 ± 7.44% and 5.74 ± 2.95%, respectively). GHBLUP showed a high improvement (up to 11.29 ± 9.87%) compared with GBLUP. The Bayesian models have higher accuracies than BLUP models in most scenarios. The average computing time of the BayesBH+BayesB model can reduce by 29.3% compared with the BayesB model. The prediction accuracies using the LD-based haplotype method showed higher improvements than the fixed-SNP haplotype method. In addition, to avoid the influence of rare haplotypes generated from haplotype construction, we compared the performance of GP by filtering four types of minor haplotype allele frequency (MHAF) (0.01, 0.025, 0.05, and 0.1) under different conditions (LD levels were set at r 2 > 0.3, and the fixed number of SNPs was 5). We found the optimal MHAF threshold for LW was 0.01, and the optimal MHAF threshold for DP and LDMW was 0.025.

16.
Front Genet ; 12: 750746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912371

RESUMO

Bone weight is critical to affect body conformation and stature in cattle. In this study, we conducted a genome-wide association study for bone weight in Chinese Simmental beef cattle based on the imputed sequence variants. We identified 364 variants associated with bone weight, while 350 of them were not included in the Illumina BovineHD SNP array, and several candidate genes and GO terms were captured to be associated with bone weight. Remarkably, we identified four potential variants in a candidate region on BTA6 using Bayesian fine-mapping. Several important candidate genes were captured, including LAP3, MED28, NCAPG, LCORL, SLIT2, and IBSP, which have been previously reported to be associated with carcass traits, body measurements, and growth traits. Notably, we found that the transcription factors related to MED28 and LCORL showed high conservation across multiple species. Our findings provide some valuable information for understanding the genetic basis of body stature in beef cattle.

17.
Animals (Basel) ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34944246

RESUMO

Huaxi cattle, a specialized beef cattle breed in China, has the characteristics of fast growth, high slaughter rate, and net meat rate, good reproductive performance, strong stress resistance, and wide adaptability. In this study, we evaluated the genetic diversity, population structure, and genetic relationships of Huaxi cattle and its ancestor populations at the genome-wide level, as well as detecting the selection signatures of Huaxi cattle. Principal component analysis (PCA) and phylogenetic analysis revealed that Huaxi cattle were obviously separated from other cattle populations. The admixture analysis showed that Huaxi cattle has distinct genetic structures among all populations at K = 4. It can be concluded that Huaxi cattle has formed its own unique genetic features. Using integrated haplotype score (iHS) and composite likelihood ratio (CLR) methods, we identified 143 and 199 potentially selected genes in Huaxi cattle, respectively, among which nine selected genes (KCNK1, PDLIM5, CPXM2, CAPN14, MIR2285D, MYOF, PKDCC, FOXN3, and EHD3) related to ion binding, muscle growth and differentiation, and immunity were detected by both methods. Our study sheds light on the unique genetic feature and phylogenetic relationship of Huaxi cattle, provides a basis for the genetic mechanism analysis of important economic traits, and guides further intensive breeding improvement of Huaxi cattle.

18.
Front Genet ; 12: 665382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394182

RESUMO

A haplotype is defined as a combination of alleles at adjacent loci belonging to the same chromosome that can be transmitted as a unit. In this study, we used both the Illumina BovineHD chip (HD chip) and imputed whole-genome sequence (WGS) data to explore haploblocks and assess haplotype effects, and the haploblocks were defined based on the different LD thresholds. The accuracies of genomic prediction (GP) for dressing percentage (DP), meat percentage (MP), and rib eye roll weight (RERW) based on haplotype were investigated and compared for both data sets in Chinese Simmental beef cattle. The accuracies of GP using the entire imputed WGS data were lower than those using the HD chip data in all cases. For DP and MP, the accuracy of GP using haploblock approaches outperformed the individual single nucleotide polymorphism (SNP) approach (GBLUP_In_Block) at specific LD levels. Hotelling's test confirmed that GP using LD-based haplotypes from WGS data can significantly increase the accuracies of GP for RERW, compared with the individual SNP approach (∼1.4 and 1.9% for GHBLUP and GHBLUP+GBLUP, respectively). We found that the accuracies using haploblock approach varied with different LD thresholds. The LD thresholds (r 2 ≥ 0.5) were optimal for most scenarios. Our results suggested that LD-based haploblock approach can improve accuracy of genomic prediction for carcass traits using both HD chip and imputed WGS data under the optimal LD thresholds in Chinese Simmental beef cattle.

19.
Animals (Basel) ; 11(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202066

RESUMO

Chinese Simmental beef cattle play a key role in the Chinese beef industry due to their great adaptability and marketability. To achieve efficient genetic gain at a low breeding cost, it is crucial to develop a customized cost-effective low-density SNP panel for this cattle population. Thirteen growth, carcass, and meat quality traits and a BovineHD Beadchip genotyping of 1346 individuals were used to select trait-associated variants and variants contributing to great genetic variance. In addition, highly informative SNPs with high MAF in each 500 kb sliding window and in each genic region were also included separately. A low-density SNP panel consisting of 30,684 SNPs was developed, with an imputation accuracy of 97.4% when imputed to the 770 K level. Among 13 traits, the average prediction accuracy levels evaluated by genomic best linear unbiased prediction (GBLUP) and BayesA/B/Cπ were 0.22-0.47 and 0.18-0.60 for the ~30 K array and BovineHD Beadchip, respectively. Generally, the predictive performance of the ~30 K array was trait-dependent, with reduced prediction accuracies for seven traits. While differences in terms of prediction accuracy were observed among the 13 traits, the low-density SNP panel achieved moderate to high accuracies for most of the traits and even improved the accuracies for some traits.

20.
Animals (Basel) ; 10(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824035

RESUMO

Runs of homozygosity (ROH) are continuous homozygous regions that generally exist in the DNA sequence of diploid organisms. Identifications of ROH leading to reduction in performance can provide valuable insight into the genetic architecture of complex traits. Here, we evaluated genome-wide patterns of homozygosity and their association with important traits in Chinese Wagyu beef cattle. We identified a total of 29,271 ROH segments from 462 animals. Within each animal, an average number of ROH was 63.36 while an average length was 62.19 Mb. To evaluate the enrichment of ROH across genomes, we initially identified 280 ROH regions by merging ROH events across all individuals. Of these, nine regions containing 154 candidate genes, were significantly associated with six traits (body height, chest circumference, fat coverage, backfat thickness, ribeye area, and carcass length; p < 0.01). Moreover, we found 26 consensus ROH regions with frequencies exceeding 10%, and several regions overlapped with QTLs, which are associated with body weight, calving ease, and stillbirth. Among them, we observed 41 candidate genes, including BCKDHB, MAB21L1, SLC2A13, FGFR3, FGFRL1, CPLX1, CTNNA1, CORT, CTNNBIP1, and NMNAT1, which have been previously reported to be related to body conformation, meat quality, susceptibility, and reproductive traits. In summary, we assessed genome-wide autozygosity patterns and inbreeding levels in Chinese Wagyu beef cattle. Our study identified many candidate regions and genes overlapped with ROH for several important traits, which could be unitized to assist the design of a selection mating strategy in beef cattle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA