Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Hepatol ; 80(5): 753-763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38244845

RESUMO

BACKGROUND & AIMS: Ectopic liver regeneration in the spleen is a promising alternative to organ transplantation for treating liver failure. To accommodate transplanted liver cells, the splenic tissue must undergo structural changes to increase extracellular matrix content, demanding a safe and efficient approach for tissue remodelling. METHODS: We synthesised sulphated hyaluronic acid (sHA) with an affinity for the latent complex of transforming growth factor-ß (TGF-ß) and cross-linked it into a gel network (sHA-X) via click chemistry. We injected this glycan into the spleens of mice to induce splenic tissue remodelling via supraphysiological activation of endogenous TGF-ß. RESULTS: sHA-X efficiently bound to the abundant latent TGF-ß in the spleen. It provided the molecular force to liberate the active TGF-ß dimers from their latent complex, mimicking the 'bind-and-pull' mechanism required for physiological activation of TGF-ß and reshaping the splenic tissue to support liver cell growth. Hepatocytes transplanted into the remodelled spleen developed into liver tissue with sufficient volume to rescue animals with a metabolic liver disorder (Fah-/- transgenic model) or following 90% hepatectomy, with no adverse effects observed and no additional drugs required. CONCLUSION: Our findings highlight the efficacy and translational potential of using sHA-X to remodel a specific organ by mechanically activating one single cytokine, representing a novel strategy for the design of biomaterials-based therapies for organ regeneration. IMPACT AND IMPLICATIONS: Cell transplantation may provide a lifeline to millions of patients with end-stage liver diseases, but their severely damaged livers being unable to accommodate the transplanted cells is a crucial hurdle. Herein, we report an approach to restore liver functions in another organ - the spleen - by activating one single growth factor in situ. This approach, based on a chemically designed polysaccharide that can mechanically liberate the active transforming growth factor-ß to an unusually high level, promotes the function of abundant allogenic liver cells in the spleen, rescuing animals from lethal models of liver diseases and showing a high potential for clinical translation.


Assuntos
Hiperplasia Nodular Focal do Fígado , Hepatopatias , Humanos , Camundongos , Animais , Regeneração Hepática/fisiologia , Baço , Fator de Crescimento Transformador beta/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
2.
Clin Immunol ; 265: 110291, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908771

RESUMO

Linear IgA bullous dermatosis (LABD) and dermatitis herpetiformis (DH) represent the major subtypes of IgA mediated autoimmune bullous disorders. We sought to understand the disease etiology by using serum proteomics. We assessed 92 organ damage biomarkers in LAB, DH, and healthy controls using the Olink high-throughput proteomics. The positive proteomic serum biomarkers were used to correlate with clinical features and HLA type. Targeted proteomic analysis of IgA deposition bullous disorders vs. controls showed elevated biomarkers. Further clustering and enrichment analyses identified distinct clusters between LABD and DH, highlighting the involvement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Comparative analysis revealed biomarkers with distinction between LABD and DH and validated in the skin lesion. Finally, qualitative correlation analysis with DEPs suggested six biomarkers (NBN, NCF2, CAPG, FES, BID, and PXN) have better prognosis in DH patients. These findings provide potential biomarkers to differentiate the disease subtype of IgA deposition bullous disease.

3.
J Virol ; 97(12): e0133823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38009916

RESUMO

IMPORTANCE: Betacoronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. However, whether all betacoronaviruses members use the same pathway to exit cells remains unknown. Here, we demonstrated that porcine hemagglutinating encephalomyelitis virus (PHEV) egress occurs by Arl8b-dependent lysosomal exocytosis, a cellular egress mechanism shared by SARS-CoV-2 and MHV. Notably, PHEV acidifies lysosomes and activates lysosomal degradative enzymes, while SARS-CoV-2 and MHV deacidify lysosomes and limit the activation of lysosomal degradative enzymes. In addition, PHEV release depends on V-ATPase-mediated lysosomal pH. Furthermore, this is the first study to evaluate ßCoV using lysosome for spreading through the body, and we have found that lysosome played a critical role in PHEV neural transmission and brain damage caused by virus infection in the central nervous system. Taken together, different betacoronaviruses could disrupt lysosomal function differently to exit cells.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Exocitose , Lisossomos , Neurônios , Animais , Camundongos , Betacoronavirus 1/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Lisossomos/virologia , Vírus da Hepatite Murina/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , SARS-CoV-2/metabolismo , Suínos/virologia , Concentração de Íons de Hidrogênio , ATPases Vacuolares Próton-Translocadoras/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia
4.
Nat Mater ; 22(7): 903-912, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36759564

RESUMO

The surge of fast-spreading SARS-CoV-2 mutated variants highlights the need for fast, broad-spectrum strategies to counteract viral infections. In this work, we report a physical barrier against SARS-CoV-2 infection based on an inhalable bioadhesive hydrogel, named spherical hydrogel inhalation for enhanced lung defence (SHIELD). Conveniently delivered via a dry powder inhaler, SHIELD particles form a dense hydrogel network that coats the airway, enhancing the diffusional barrier properties and restricting virus penetration. SHIELD's protective effect is first demonstrated in mice against two SARS-CoV-2 pseudo-viruses with different mutated spike proteins. Strikingly, in African green monkeys, a single SHIELD inhalation provides protection for up to 8 hours, efficiently reducing infection by the SARS-CoV-2 WA1 and B.1.617.2 (Delta) variants. Notably, SHIELD is made with food-grade materials and does not affect normal respiratory functions. This approach could offer additional protection to the population against SARS-CoV-2 and other respiratory pathogens.


Assuntos
COVID-19 , Animais , Chlorocebus aethiops , Camundongos , SARS-CoV-2 , Hidrogéis , Primatas
5.
PLoS Pathog ; 18(6): e1010667, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759516

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic coronavirus belonging to the genus Betacoronavirus. Similar to pathogenic coronaviruses to which humans are susceptible, such as SARS-CoV-2, PHEV is transmitted primarily through respiratory droplets and close contact, entering the central nervous system (CNS) from the peripheral nerves at the site of initial infection. However, the neuroinvasion route of PHEV are poorly understood. Here, we found that BALB/c mice are susceptible to intranasal PHEV infection and showed distinct neurological manifestations. The behavioral study and histopathological examination revealed that PHEV attacks neurons in the CNS and causes significant smell and taste dysfunction in mice. By tracking neuroinvasion, we identified that PHEV invades the CNS via the olfactory nerve and trigeminal nerve located in the nasal cavity, and olfactory sensory neurons (OSNs) were susceptible to viral infection. Immunofluorescence staining and ultrastructural observations revealed that viral materials traveling along axons, suggesting axonal transport may engage in rapid viral transmission in the CNS. Moreover, viral replication in the olfactory system and CNS is associated with inflammatory and immune responses, tissue disorganization and dysfunction. Overall, we proposed that PHEV may serve as a potential prototype for elucidating the pathogenesis of coronavirus-associated neurological complications and olfactory and taste disorders.


Assuntos
Betacoronavirus 1 , COVID-19 , Infecções por Coronavirus/patologia , Transtornos do Olfato , Animais , Betacoronavirus 1/fisiologia , Humanos , Camundongos , Transtornos do Olfato/virologia , SARS-CoV-2 , Olfato , Suínos
6.
Cancer Cell Int ; 24(1): 116, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539153

RESUMO

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) have been acknowledged as the most important stromal cells in the bone marrow (BM) microenvironment for physiologic hematopoiesis and the concomitant hematologic malignancies. However, the systematic and detailed dissection of the biological and transcriptomic signatures of BM-MSCs in multiple myeloma (MM) are largely unknown. METHODS: In this study, we isolated and identified BM-MSCs from 10 primary MM patients and 10 healthy donors (HD). On the one hand, we compared the multifaceted biological characteristics of the indicated two BM-MSCs, including biomarker expression pattern, multilineage differentiation potential, stemness and karyotyping, together with the cellular vitality and immunosuppressive property. On the other hand, we took advantage of RNA-SEQ and bioinformatics analysis to verify the similarities and differences at the transcriptomic level between MM-MSCs and HD-MSCs. RESULTS: As to biological phenotypes and biofunctions, MM-MSCs revealed conservation in immunophenotype, stemness and differentiation towards adipocytes and chondrocytes with HD-MSCs, whereas with impaired osteogenic differentiation potential, cellular vitality and immunosuppressive property. As to transcriptomic properties, MM-MSCs revealed multidimensional alterations in gene expression profiling and genetic variations. CONCLUSIONS: Overall, our date systematic and detailed reflected the multifaceted similarities and variations between MM-MSCs and HD-MSCs both at the cellular and molecular levels, and in particular, the alterations of immunomodulation and cellular viability of MM-MSCs, which wound benefit the further exploration of the pathogenesis and new drug application (NDA) of multiple myeloma from the view of BM-MSCs.

7.
Circ Res ; 131(10): e135-e150, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36252111

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC)-derived exosomes are well recognized immunomodulating agents for cardiac repair, while the detailed mechanisms remain elusive. The Pericardial drainage pathway provides the heart with immunosurveillance and establishes a simplified model for studying the mechanisms underlying the immunomodulating effects of therapeutic exosomes. METHODS: Myocardial infarction (MI) models with and without pericardiectomy (corresponding to Tomy MI and NonTomy MI) were established to study the functions of pericardial drainage pathway in immune activation of cardiac-draining mediastinal lymph node (MLN). Using the NonTomy MI model, MSC exosomes or vehicle PBS was intrapericardially injected for MI treatment. Via cell sorting and RNA-seq (RNA-sequencing) analysis, the differentially expressed genes were acquired for integrated pathway analysis to identify responsible mechanisms. Further, through functional knockdown/inhibition studies, application of cytokines and neutralizing antibodies, western blot, flow cytometry, and cytokine array, the molecular mechanisms were studied. In addition, the therapeutic efficacy of intrapericardially injected exosomes for MI treatment was evaluated through functional and histological analyses. RESULTS: We show that the pericardial draining pathway promoted immune activation in the MLN following MI. Intrapericardially injected exosomes accumulated in the MLN and induced regulatory T cell differentiation to promote cardiac repair. Mechanistically, uptake of exosomes by major histocompatibility complex (MHC)-II+ antigen-presenting cells (APCs) induced Foxo3 activation via the protein phosphatase (PP)-2A/p-Akt/forkhead box O3 (Foxo3) pathway. Foxo3 dominated APC cytokines (IL-10, IL-33, and IL-34) expression and built up a regulatory T cell (Treg)-inducing niche in the MLN. The differentiation of Tregs as well as their cardiac deployment were elevated, which contributed to cardiac inflammation resolution and cardiac repair. CONCLUSIONS: This study reveals a novel mechanism underlying the immunomodulation effects of MSC exosomes and provides a promising candidate (PP2A/p-Akt/Foxo3 signaling pathway) with a favorable delivery route (intrapericardial injection) for cardiac repair.


Assuntos
Exossomos , Traumatismos Cardíacos , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Exossomos/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Traumatismos Cardíacos/metabolismo
8.
BMC Infect Dis ; 24(1): 578, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862881

RESUMO

BACKGROUND: Tuberculosis (TB) remains a global public health event of great concern, however epidemic data on TB covering entire areas during the special period of the COVID-19 epidemic have rarely been reported. We compared the dissemination and multidrug-resistance patterns of Mycobacterium tuberculosis complex (MTBC) in the main urban area of Luoyang City, China (including six municipal jurisdictions) and nine county and township areas under its jurisdiction, aimed to establish the epidemiology of TB in this region and to provide reference for precision anti-TB in places with similar settings. METHODS: From 2020 to 2022, sputum samples were collected from 18,504 patients with confirmed, suspected and unexcluded TB in 10 designated TB medical institutions. Insertion sequence 6110 was amplified by PCR (rpoB gene detection if necessary) to confirm the presence of MTBC. PCR-positive specimens were analyzed by multicolor melting curve analysis to detect multidrug resistance. RESULTS: Among the 18,504 specimens, 2675 (14.5%) were MTBC positive. The positive rate was higher in the main urban area than in the county and township areas (29.8% vs. 10.9%, p < 0.001). Male, re-treated and smear-positive groups were high-burden carriers of MTBC. Individuals aged > 60 years were the largest group infected with MTBC in the main urban area, compared with individuals aged < 61 years in the county and township areas. The detection of multidrug-resistant TB (MDR-TB) was higher in the main urban area than in the county and township areas (13.9% vs. 7.8%, p < 0.001). In all areas, MDR-TB groups were dominated by males, patients with a history of TB treatment, and patients aged < 61 years. Stratified analysis of MDR-TB epidemiology showed that MDR4 (INH þ RIF þ EMB þ SM) was predominant in the main urban area, while MDR3 (INH þ RIF þ SM) was predominant in the county and township areas. MDR-TB detection rate and epidemiology differed among the county and township areas. CONCLUSIONS: For local TB control, it is necessary to plan more appropriate and accurate prevention and control strategies according to the regional distribution of MTBC infection.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , China/epidemiologia , Adulto , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , COVID-19/epidemiologia , Idoso , Adolescente , Adulto Jovem , Farmacorresistência Bacteriana Múltipla/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Criança , Escarro/microbiologia , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Pré-Escolar , Idoso de 80 Anos ou mais , Lactente , Epidemias
9.
J Fluoresc ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018003

RESUMO

A new dicyanoisophorone-based ratiometric fluorescent probe NOSA was synthesized and characterized. It showed a fast fluorescence response to HClO with the emission color change from dark green to bright red. NMR, IR, and HRMS suggested that the detection of NOSA to HClO may originate from the hydroxyl deprotection reaction by HClO on the molecule NOSA, which caused a red-shift of fluorescence. The probe NOSA displayed high selectivity and excellent anti-interference performance with a limit of detection at 3.835 × 10-7 M. The convenient paper test strips were successfully obtained and applied to the detection of HClO based on fluorescence color change with the varied NaClO concentration. Moreover, spiked recovery experiments in real water samples indicated that the probe NSOA could quantitatively detect HClO, and the fluorescence bio-imagings in vivo were carried out, and HClO detection in biosystems using NOSA was realized.

10.
Bioorg Chem ; 150: 107536, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878751

RESUMO

Carboxylesterase 1 (CES1), a member of the serine hydrolase superfamily, is involved in a wide range of xenobiotic and endogenous substances metabolic reactions in mammals. The inhibition of CES1 could not only alter the metabolism and disposition of related drugs, but also be benefit for treatment of metabolic disorders, such as obesity and fatty liver disease. In the present study, we aim to develop potential inhibitors of CES1 and reveal the preferred inhibitor structure from a series of synthetic pyrazolones (compounds 1-27). By in vitro high-throughput screening method, we found compounds 25 and 27 had non-competitive inhibition on CES1-mediated N-alkylated d-luciferin methyl ester (NLMe) hydrolysis, while compound 26 competitively inhibited CES1-mediated NLMe hydrolysis. Additionally, Compounds 25, 26 and 27 can inhibit CES1-mediated fluorescent probe hydrolysis in live HepG2 cells with effect. Besides, compounds 25, 26 and 27 could effectively inhibit the accumulation of lipid droplets in mouse adipocytes cells. These data not only provided study basis for the design of newly CES1 inhibitors. The present study not only provided the basis for the development of lead compounds for novel CES1 inhibitors with better performance, but also offered a new direction for the explore of candidate compounds for the treatment of hyperlipidemia and related diseases.

11.
Clin Exp Dermatol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651209

RESUMO

Aseptic pustulosis involves inflammatory skin conditions with non-bacterial pustules on red skin, accompanied by neutrophil and eosinophil infiltration in the epidermis. Dysregulation of the IL-36 pathway leads to neutrophil aggregation and pustule formation. Variants in IL36RN, CARD14, AP1S3, MPO, SERPINA3, and BTN3A3 genes have been identified in GPP in the past. Some patients with ACH, PPP, and AGEP also exhibit mutations in IL36RN, CARD14, and AP1S3 genes, albeit with regional and population-specific variations. This study aims to explore a shared genetic foundation among aseptic pustulosis. We performed Sanger sequencing on six genes in 126 aseptic pustulosis patients. Genetic analysis identified IL36RN variants strongly associated with ACH, AGEP, and SPD. Immunohistochemistry revealed elevated inflammatory cytokines in all subtypes. This study establishes a significant association between IL36RN variants and ACH, AGEP, and SPD, emphasizing the IL-1/IL-36 chemokine-neutrophil axis as a common pathogenic mechanism. Targeting this axis holds promise for therapeutic interventions in aseptic pustulosis.

12.
Ecotoxicol Environ Saf ; 281: 116607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908055

RESUMO

Deoxynivalenol (DON), commonly known as vomitoxin, is a mycotoxin produced by fungi and is frequently found as a contaminant in various cereal-based food worldwide. While the harmful effects of DON have been extensively studied in different tissues, its specific impact on the proliferation of skeletal muscle cells remains unclear. In this study, we utilized murine C2C12 myoblasts as a model to explore the influence of DON on their proliferation. Our observations indicated that DON exhibits dose-dependent toxicity, significantly inhibiting the proliferation of C2C12 cells. Through the application of RNA-seq analysis combined with gene set enrichment analysis, we identified a noteworthy downregulation of genes linked to the extracellular matrix (ECM) and condensed chromosome. Concurrently with the reduced expression of ECM genes, immunostaining analysis revealed notable changes in the distribution of fibronectin, a vital ECM component, condensing into clusters and punctate formations. Remarkably, the exposure to DON induced the formation of multipolar spindles, leading to the disruption of the normal cell cycle. This, in turn, activated the p53-p21 signaling pathway and ultimately resulted in apoptosis. These findings contribute significant insights into the mechanisms through which DON induces toxicity within skeletal muscle cells.


Assuntos
Apoptose , Mioblastos , Tricotecenos , Animais , Tricotecenos/toxicidade , Apoptose/efeitos dos fármacos , Camundongos , Mioblastos/efeitos dos fármacos , Linhagem Celular , Mitose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38914821

RESUMO

PURPOSE: PANoptosis is considered a novel type of cell death that plays important roles in tumor progression. In this study, we applied machine learning algorithms to explore the relationships between PANoptosis-related lncRNAs (PRLs) and head and neck squamous cell carcinoma (HNSCC) and established a neural network model for prognostic prediction. METHODS: Information about the HNSCC cohort was downloaded from the TCGA database, and the differentially expressed prognostic PRLs between tumor and normal samples were assessed in patients with different tumor subtypes via nonnegative matrix factorization (NMF) analysis. Subsequently, five kinds of machine-learning algorithms were used to select the core PRLs across the subtypes, and the interactive features were pooled into a neural network model to establish a PRL-related risk score (PLRS) system. Survival differences were compared via Kaplan‒Meier analysis, and the predictive effects were assessed with the areas under the ROCs. Moreover, functional enrichment analysis, immune infiltration, tumor mutation burden (TMB) and clinical therapeutic response were also conducted to further evaluate the novel predictive model. RESULTS: A total of 347 PRLs were identified, 225 of which were differentially expressed between tumor and normal samples. Patients were divided into two clusters via NMF analysis, in which cluster 1 had a better prognosis and more immune cells and functional infiltrates. With the application of five machine learning algorithms, we selected 13 interactive PRLs to construct the predictive model. The AUCs for the ROCs in the entire set were 0.735, 0.740 and 0.723, respectively. Patients in the low-PLRS group exhibited a better prognosis, greater immune cell enrichment, greater immune function activation, lower TMB and greater sensitivity to immunotherapy. CONCLUSION: In this study, we established a novel neural network prognostic model to predict survival and identify tumor subtypes in HNSCC patients. This novel assessment system is useful for prediction, providing ideas for clinical treatment.

14.
Hepatobiliary Pancreat Dis Int ; 23(2): 195-209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37806848

RESUMO

BACKGROUND: As reported, γ-tubulin (TuBG1) is related to the occurrence and development of various types of malignant tumors. However, its role in hepatocellular cancer (HCC) is not clear. The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients. METHODS: The correlation between TuBG1 and clinical parameters and survival in HCC patients was explored by bioinformatics analysis. Immunohistochemistry was used for the verification. The molecular function of TuBG1 was measured using colony formation, scratch assay, trans-well assay and flow cytometry. Gene set enrichment analysis (GSEA) was used to pick up the enriched pathways, followed by investigating the target pathways using Western blotting. The tumor-immune system interactions and drug bank database (TISIDB) was used to evaluate TuBG1 and immunity. Based on the TuBG1-related immune genes, a prognostic model was constructed and was further validated internally and externally. RESULTS: The bioinformatic analysis found high expressed TuBG1 in HCC tissue, which was confirmed using immunohistochemistry and Western blotting. After silencing the TuBG1 in HCC cell lines, more G1 arrested cells were found, cell proliferation and invasion were inhibited, and apoptosis was promoted. Furthermore, the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3 (ATR), phospho-P38 mitogen-activated protein kinase (P-P38MAPK), phospho-P53 (P-P53), B-cell lymphoma-2 associated X protein (Bax), cleaved caspase 3 and P21; decreased the expressions of B-cell lymphoma-2 (Bcl-2), cyclin D1, cyclin E2, cyclin-dependent kinase 2 (CDK2) and CDK4. The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively correlated with the overall survival. The constructed immune prognosis model could effectively evaluate the prognosis. CONCLUSIONS: The increased expression of TuBG1 in HCC is associated with poor prognosis, which might be involved in the occurrence and development of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/farmacologia , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/farmacologia
15.
J Clin Ultrasound ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813840

RESUMO

BACKGROUND: Hypertrophic obstructive cardiomyopathy (HOCM) is clinically symptomatic and prone to malignant arrhythmias and sudden cardiac death (SCD). Currently, an effective treatment is surgical resection of the hypertrophic ventricular septum to relieve the left ventricular outflow tract (LVOT) obstruction and mitral insufficiency. Our center performs an innovative, minimally invasive right infra-axillary thoracotomy for transaortic septal myectomy. Minimally invasive procedures rely more on perioperative transesophageal echocardiography (TEE). This study aimed to explore the use of echocardiography during the perioperative period of surgical intervention for HOCM. METHODS: Between August 2021 and April 2022, 27 patients with HOCM underwent cardiac surgery at our hospital. Minimally invasive transaortic septal resection (Morrow myectomy) was performed from the right axilla. The extent of myectomy and need for mitral valve repair were based on perioperative TEE assessment and surgical findings. The demographic parameters and clinical data of patients were recorded. The cardiopulmonary bypass time, aortic cross-clamp, and mechanical ventilation times were calculated. TEE was used to assess ventricular wall thickening and anatomical abnormalities of mitral regurgitation, assist in intravenous catheterization, and assess the postoperative gradients of the LVOT. RESULTS: Among the 27 patients with HOCM who underwent transaortic septal myectomy by minimally invasive right infra-axillary thoracotomy, 16 had LVOT obstruction, 2 had mid-LV obstruction, and 9 had both LVOT and mid-LV involvement. TEE provides information about the fine structure of the LV cavity and the etiology of the obstruction. In all cases, LVOT obstruction and mitral valve systolic anterior motion were resolved postoperatively, and the degree of mitral regurgitation was significantly reduced. CONCLUSION: Perioperative echocardiography provides valuable information regarding the complex etiology of LVOT obstruction during minimally invasive right infra-axillary thoracotomy for transaortic septal myectomy. It helps determine the extent of septal resection and assess the need for concomitant mitral valve repair.

16.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892334

RESUMO

Noncoding RNAs (ncRNAs) are a class of nucleotide sequences that cannot be translated into peptides. ncRNAs can function post-transcriptionally by splicing complementary sequences of mRNAs or other ncRNAs or by directly engaging in protein interactions. Over the past few decades, the pervasiveness of ncRNAs in cell physiology and their pivotal roles in various diseases have been identified. One target regulated by ncRNAs is connexin (Cx), a protein that forms gap junctions and hemichannels and facilitates intercellular molecule exchange. The aberrant expression and misdistribution of connexins have been implicated in central nervous system diseases, cardiovascular diseases, bone diseases, and cancer. Current databases and technologies have enabled researchers to identify the direct or indirect relationships between ncRNAs and connexins, thereby elucidating their correlation with diseases. In this review, we selected the literature published in the past five years concerning disorders regulated by ncRNAs via corresponding connexins. Among it, microRNAs that regulate the expression of Cx43 play a crucial role in disease development and are predominantly reviewed. The distinctive perspective of the ncRNA-Cx axis interprets pathology in an epigenetic manner and is expected to motivate research for the development of biomarkers and therapeutics.


Assuntos
Conexinas , RNA não Traduzido , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Animais , Conexinas/metabolismo , Conexinas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Regulação da Expressão Gênica , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Junções Comunicantes/metabolismo , Junções Comunicantes/genética , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/terapia
17.
Clin Psychol Psychother ; 31(3): e2981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38687203

RESUMO

OBJECTIVE: This study aimed to investigate whether attentional control serves as a mediator for mindfulness-based interventions for emotional distress, utilizing a randomized waitlist (WL)-controlled design. METHODS: A total of 498 participants with high emotional distress was recruited online and randomly assigned to a 49-day online Mindfulness Intervention for Emotional Distress (MIED) group (N = 249) or a WL control group (N = 249). Levels of attentional control, anxiety and depression were assessed at baseline (T0), Week 3 (T3), Week 5 (T5) and Week 7 (postintervention, T7). RESULTS: Linear mixed models revealed significant Group-by-Time interaction effects for attentional control (p < 0.001), anxiety (p < 0.001) and depression (p < 0.05). Latent growth curve analyses demonstrated a significant increase in attentional control and a decrease in anxiety and depression levels during the MIED programme. These changes becoming evident starting Week 3. Longitudinal mediation analyses revealed that the slope of attentional control significantly mediated the effects of the MIED programme on the slope of anxiety and depression levels. Further, attentional control level at Week 3 significantly mediates the effect of MIED programme on anxiety and depression levels at Weeks 5 and 7. Similarly, attentional control level at Week 5 significantly mediates the MIED programme's effects on anxiety and depression levels at Week 7. CONCLUSIONS: The present trial provides evidence suggesting that mindfulness interventions may alleviate emotional distress through the enhancement of attentional control. TRIAL REGISTRATION: Chinese Clinical Trial Registry number: ChiCTR2200064140.


Assuntos
Atenção , Atenção Plena , Humanos , Atenção Plena/métodos , Feminino , Masculino , Adulto , Angústia Psicológica , Análise de Mediação , Pessoa de Meia-Idade , Resultado do Tratamento , Ansiedade/terapia , Ansiedade/psicologia , Depressão/terapia , Depressão/psicologia
18.
Nurs Crit Care ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763524

RESUMO

BACKGROUND: Although there are many reasons for extubation failure, maintaining negative or lower positive fluid balances 24 hours before extubation may be a key measure for successful extubation. AIM: To assess the predictive value of fluid balance before extubation and its outcome in mechanically ventilated cases in the intensive care unit (ICU). STUDY DESIGN: This retrospective cohort study involved collecting clinical data from patients undergoing mechanical ventilation in Lanzhou general adult ICU from January 2022 to December 2022. Based on extubation outcomes, the patients were divided into a successful extubation group and a failed extubation group. Their fluid balance levels 24 h before extubation were compared with analyse the predictive value of fluid balance on extubation outcomes in patients undergoing mechanical ventilation. RESULTS: In this study, clinical data from 545 patients admitted to a general adult ICU were collected. According to the inclusion and exclusion criteria, 265 (48.6%) patients were included, of which 197 (74.3%) were successfully extubated; extubation was unsuccessful in 68 (25.7%) patients. The total intake and fluid balance levels in patients in the failed extubation group 24 h before extubation were significantly higher than those in the successful extubation group, with a median of 2679.00 (2410.44-3193.50) mL versus 2435.40 (1805.04-2957.00) mL, 831.50 (26.25-1407.94) mL versus 346.00 (-163.00-941.50) mL. Receiver operating characteristic (ROC) curve analysis showed that the optimal cut-off value for predicting extubation outcomes was 497.5 mL (sensitivity 64.7%, specificity 59.4%) for fluid balance 24 h before extubation. The area under the ROC curve was 0.627 (95% confidence interval [CI] 0.547-0.707). Based on the logistic regression model, cumulative fluid balance >497.5 mL 24 h before extubation could predict its outcomes in mechanically ventilated patients in the ICU (OR = 5.591, 95% CI [2.402-13.015], p < .05). CONCLUSIONS: The fluid balance level 24 h before extubation was correlated with the outcome of extubation in mechanically ventilated patients in the ICU. The risk of extubation failure was higher when the fluid balance level was >497.5 mL. RELEVANCE TO CLINICAL PRACTICE: Tracheal intubation is a crucial life support technique for many critically ill patients, and determining the appropriate time for extubation remains a challenge for clinicians. Although there are many reasons for extubation failure, acute pulmonary oedema caused by continuous positive fluid balance and volume overload is one of the main reasons for extubation failure. Therefore, it is very important to study the relationship between fluid balance and extubation outcome to improve the prognosis of patients with invasive mechanical ventilation in ICU.

19.
Angew Chem Int Ed Engl ; : e202406855, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871653

RESUMO

In NH3 capture technologies, the desorption process is usually driven by high temperature and low pressure (such as 150-200°C under vacuum), which accounts for intensive energy consumption and CO2 emission. Developing light responsive adsorbent is promising in this regard but remains a great challenge. Here, we for the first time designed and synthesized a light responsive azophenol-containing covalent organic framework (COF), COF-HNU38, to address this challenge. We found that at 25 °C and 1.0 bar the cis -COF exhibited a NH3 uptake capacity of 7.7 mmol g-1 and a NH3/N2 selectivity of 158. In the adsorbed NH3, about 29.0% could be removed by vis-light irradiated cis-trans isomerization at 25 °C, and the remaining NH3 might be released at 25 °C under vacuum. Almost no decrease in adsorption capacity was observed after eight adsorption-desorption cycles. As such, an efficient NH3 capture and low energy release strategy was established thanks to the multiple hydrogen bond interactions (which are strong in total but weak in individuals) between NH3 and the smart COF, and the increase in polarity and in number of hydrogen bond sites after the trans-cis isomerization process.

20.
IUBMB Life ; 75(5): 440-452, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469534

RESUMO

Atherosclerosis, a chronic inflammatory disease that often leads to myocardial infarction and stroke, is mainly caused by lipid accumulation. Eukaryotic initiation factor 6 (Eif6) is a rate-limiting factor in protein translation of transcription factors necessary for lipogenesis. To determine whether Eif6 affects atherosclerosis, Eif6+/- mice were crossed into Apoe-/- background. Apoe-/-/Eif6+/- mice on high fat diet showed significant reduction in atherosclerotic lesions and necrotic core content in aortic root sections in comparison with Apoe-/- mice. RNA-Seq was used to investigate the effect of Eif6 in aorta. Deficiency of Eif6 shows broad effect on cell metabolism. Expression of genes for fatty acid synthesis including Fatty acid synthase (Fasn), Elovl3, Elovl6 and Acaca are down-regulated in aortas. Importantly, Fasn is decreased in macrophages. Results suggest that Eif6 deficiency may decrease atherosclerosis through inhibition of Fasn and lipids metabolism in macrophages.


Assuntos
Aterosclerose , Camundongos , Animais , Camundongos Knockout para ApoE , Aterosclerose/metabolismo , Macrófagos/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA