RESUMO
AIM: Plant metal tolerance proteins (MTPs) are plant membrane divalent cation transporters that specifically contribute to heavy metal stress resistance and mineral uptake. However, little is known about this family's molecular behaviors and biological activities in soybean. METHODS AND RESULTS: A total of 20 potential MTP candidate genes were identified and studied in the soybean genome for phylogenetic relationships, chromosomal distributions, gene structures, gene ontology, cis-elements, and previous gene expression. Furthermore, the expression of MTPs has been investigated under different heavy metals treatments. All identified soybean MTPs (GmaMTPs) contain a cation efflux domain or a ZT dimer and are further divided into three primary cation diffusion facilitator (CDF) groups: Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. The developmental analysis reveals that segmental duplication contributes to the GmaMTP family's expansion. Tissue-specific expression profiling revealed comparative expression profiling in similar groups, although gene expression differed between groups. GmaMTP genes displayed biased responses in either plant leaves or roots when treated with heavy metal. In the leaves and roots, nine and ten GmaMTPs responded to at least one metal ion treatment. Furthermore, in most heavy metal treatments, GmaMTP1.1, GmaMTP1.2, GmaMTP3.1, GmaMTP3.2, GmaMTP4.1, and GmaMTP4.3 exhibited significant expression responses. CONCLUSION: Our findings provided insight into the evolution of MTPs in soybean. Overall, our findings shed light on the evolution of the MTP gene family in soybean and pave the path for further functional characterization of this gene family.
Assuntos
Glycine max , Metais Pesados , Glycine max/genética , Glycine max/metabolismo , Filogenia , Sequência de Aminoácidos , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genéticaRESUMO
KEY MESSAGE: Improving crop resistance against insect pests is crucial for ensuring future food security. Integrating genomics with modern breeding methods holds enormous potential in dissecting the genetic architecture of this complex trait and accelerating crop improvement. Insect resistance in crops has been a major research objective in several crop improvement programs. However, the use of conventional breeding methods to develop high-yielding cultivars with sustainable and durable insect pest resistance has been largely unsuccessful. The use of molecular markers for identification and deployment of insect resistance quantitative trait loci (QTLs) can fastrack traditional breeding methods. Till date, several QTLs for insect pest resistance have been identified in field-grown crops, and a few of them have been cloned by positional cloning approaches. Genome editing technologies, such as CRISPR/Cas9, are paving the way to tailor insect pest resistance loci for designing crops for the future. Here, we provide an overview of diverse defense mechanisms exerted by plants in response to insect pest attack, and review recent advances in genomics research and genetic improvements for insect pest resistance in major field crops. Finally, we discuss the scope for genomic breeding strategies to develop more durable insect pest resistant crops.
Assuntos
Edição de Genes , Genômica , Animais , InsetosRESUMO
KEY MESSAGE: Pleiotropic and epistatic quantitative disease resistance loci (QDRL) were identified for soybean partial resistance to different isolates of Pythium irregulare and Pythium sylvaticum. Pythium root rot is an important seedling disease of soybean [Glycine max (L.) Merr.], a crop grown worldwide for protein and oil content. Pythium irregulare and P. sylvaticum are two of the most prevalent and aggressive Pythium species in soybean producing regions in the North Central U.S. Few studies have been conducted to identify soybean resistance for management against these two pathogens. In this study, a mapping population (derived from E13390 x E13901) with 228 F4:5 recombinant inbred lines were screened against P. irregulare isolate MISO 11-6 and P. sylvaticum isolate C-MISO2-2-30 for QDRL mapping. Correlation analysis indicated significant positive correlations between soybean responses to the two pathogens, and a pleiotropic QDRL (qPirr16.1) was identified. Further investigation found that the qPirr16.1 imparts dominant resistance against P. irregulare, but recessive resistance against P. sylvaticum. In addition, two QDRL, qPsyl15.1, and qPsyl18.1 were identified for partial resistance to P. sylvaticum. Further analysis revealed epistatic interactions between qPirr16.1 and qPsyl15.1 for RRW and DRX, whereas qPsyl18.1 contributed resistance to RSE. Marker-assisted resistance spectrum analysis using F6:7 progeny lines verified the resistance of qPirr16.1 against four additional P. irregulare isolates. Intriguingly, although the epistatic interaction of qPirr16.1 and qPsyl15.1 can be confirmed using two additional isolates of P. sylvaticum, the interaction appears to be suppressed for the other two P. sylvaticum isolates. An 'epistatic gene-for-gene' model was proposed to explain the isolate-specific epistatic interactions. The integration of the QDRL into elite soybean lines containing all the desirable alleles has been initiated.
Assuntos
Resistência à Doença , Pythium , Resistência à Doença/genética , Doenças das Plantas/genética , Plântula , Glycine max/genéticaRESUMO
AIM: Anthocyanin, an essential ingredient of functional foods, is present in a wide range of plants, including black carrots. The current investigation was carried out to analyse the effect of cold stress on the expression of major anthocyanins and anthocyanin biosynthetic pathway genes, MYB6 and LDOX-1. METHODS AND RESULTS: Five cultivated carrot genotypes belonging to the eastern group, having anthocyanin pigment, were used in the current study. The qRT-PCR analysis revealed that relative gene expression of transcription factor MYB-6 and LDOX1gene was highly expressed upon cold stress compared to non-stress samples. High-performance liquid chromatography-based quantification of Cyanidin 3-O-glucoside (Kuromanin chloride), Ferulic acid, 3,5-Dimethoxy-4-hydroxycinnamic acid (Sinapic acid), and Rutin revealed a significant increase in these major anthocyanins in response to cold stress when compared to control plants. CONCLUSION: We conclude that MYB6 and LDOX1 gene expression increases upon cold stress, which induces accumulation of major anthocyanins in purple black carrot and suggests a possible cross-link between cold stress and anthocyanin biosynthesis in purple black carrot.
Assuntos
Daucus carota , Antocianinas , Resposta ao Choque Frio/genética , Daucus carota/genética , Daucus carota/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
BACKGROUND: Characterization and evaluation of plant genetic resources play an important role for their utilization in the crop improvement programmes. METHODS AND RESULTS: This study involves the agro-morphological and cooking quality besides, molecular characterization of 51 genotypes/advance breeding lines of rice from Kashmir Himalayas. Significant variability was observed for all agro-morphological and cooking quality traits among all the studied genotypes. Cluster analysis using UPGMA method divided the genotypes into two major clusters having 15 and 36 genotypes. Thirty eight genotypes screened using 24 SSR markers detected 48 alleles with 2.0 alleles for each locus with average polymorphism information content (PIC) of 0.37. High polymorphism information content (PIC) values was observed for the primers RM263 (0.67), RM159 (0.59) and RM333 (0.50). Furthermore, out of 38 SSR markers screened on 192 temperate rice germpalsm lines, R4M17 accurately differentiated indica and temperate japonica genotypes amplifying 220 bp and 169 bp, respectively. Accordingly, 15 genotypes were reported as indica and 28 temperate japonica in addition to 149 genotypes as intermediate types. CONCLUSION: The information on marker-based diversity and performance based on cooking quality and agronomic traits helped to select the most divergent lines for crossing. Also the analysis was useful to classify the temperate germplasm into indica and temperate japonica. The classification could be helpful to devise a strategy for inter-sub species hybridization to breed for improved rice varieties.
Assuntos
Oryza , Marcadores Genéticos/genética , Variação Genética/genética , Genótipo , Índia , Oryza/genética , Melhoramento VegetalRESUMO
BACKGROUND: Scab caused by Venturia inaequalis (Cke.) Wint. is the most important fungal disease of apple. Fungicide application is a widely practiced method of disease control. However, the use of chemicals is costintensive, tedious, and ecologically unsafe. The development of genetic resistance and the breeding of resistant cultivars is the most reliable and safest option. One such source of scab resistance happens to be the variety 'Shireen', released from SKUAST-Kashmir. However, to date, the nature of resistance and its genetic control have not been characterized. Objective This research aimed to elucidate the genetic basis of scab resistance in Shireen. METHODS: Genetic mapping of quantitative trait loci (QTL) for resistance to apple scab disease was performed using an F1 cross developed between the susceptible cultivar 'StarKrimson' and the resistant cultivar 'Shireen'. The population was evaluated for two consecutive years. Further, six candidate genes were analyzed via quantitative real-time PCR, to determine their expression level in response to the pathogen infestation. RESULTS: Genotyping and disease phenotyping of populations led us to identify two quantitative trait loci (QTLs), namely qRVI.SS-LG2.2019 and qRVI.SS-LG8.2019 on chromosomes 2 and 8 with LOD-values of 7.67 and 4.99 respectively, and six potential CDGs for the polygenic resistance in 'Shireen'. The genomic region corresponding to the mapped QTLs in LG 2 and LG 8 of 'Shireen' was examined for candidate genes possibly related to scab resistance using in silico analysis. CONCLUSION: The QTLs mapped in the genetic background of Shireen are the novel QTLs and may be transferred to desirable genetic backgrounds and provide opportunities for isolation and cloning of genes apart from their utility to achieve durable resistance to scab.
Assuntos
Ascomicetos , Malus , Ascomicetos/genética , Genes de Plantas/genética , Malus/genética , Malus/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genéticaRESUMO
BACKGROUND: Sea buckthorn (Hippophae) is in the focus of interest mainly for its positive effects on health of both human and animal organisms. Due to the similarities in vegetative morphology, Hippophae species are often misidentified. Therefore, current study was focused on ITS based sequence characterization of sea buckthorn species and comparative biochemical evaluation for its antioxidant properties. METHODS AND RESULTS: DNA was extracted from leaf samples. Primer pairs K-Lab-SeaBukRhm-ITS1F1- K-Lab-SeaBukRhm-ITS1R1 and K-LabSeaBukTib- ITSF1- K-LabSeaBukTib-ITSR1 were used for PCR amplification. The purified PCR products were outsourced for sequencing. Phylogenetic tree was constructed based on neighbor-joining (NJ) method. Moreover, comparison of antioxidant potential of leaves of two sea buckthorn species (Hippophae rhamnoides and Hippophae tibetana) collected from different regions of Ladakh viz., Stakna, Nubra, DRDO Leh and Zanskar was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis (3- ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), and Total antioxidant capacity (TAC) by phosphomolybdenum assays. The present investigation led to the differentiation of two sea buckthorn species viz., H. rhamnoides and H. tibetana based on Internal Transcribed Spacer (ITS) region. Moreover, significant variation was observed in antioxidant potential of leaf extracts collected from different regions. CONCLUSIONS: Primary ITS sequence analysis was found to be powerful tool for identification and genetic diversity studies in sea buckthorn. Leaves of sea buckthorn have pronounced antioxidant properties and can be used in food, neutraceuticals and pharmaceutical industries etc. The current study will pave the way to discover small bioactive molecules responsible for antioxidant and anticancer properties in sea buckthorn.
Assuntos
Hippophae , Animais , Antioxidantes/análise , Frutas/química , Variação Genética , Hippophae/química , Hippophae/genética , Filogenia , Extratos Vegetais/químicaRESUMO
KEY MESSAGE: Two soybean QDRL were identified with additive interaction to P. sansomeana isolate MPS17-22. Further analyses uncovered four interaction patterns between the two QDRL and seven additional P. sansomeana isolates. Phytophthora sansomeana is a recently recognized species that contributes to root rot in soybean. Previous studies indicated that P. sansomeana is widely distributed among soybean growing regions and has a much wider host range than P. sojae, a well-known pathogen of soybean. Unlike P. sojae, no known disease resistance genes have been documented that can effectively control P. sansomeana. Therefore, it is important to identify resistance that can be quickly integrated into future soybean varieties. E13901 is an improved soybean line that confers partial resistance to P. sansomeana. A mapping population of 228 F4:5 families was developed from a cross between E13901 and a susceptible improved soybean variety E13390. Using a composite interval mapping method, two quantitative disease resistance loci (QDRL) were identified on Chromosomes 5 (designated qPsan5.1) and 16 (designated qPsan16.1), respectively. qPsan5.1 was mapped at 54.71 cM between Gm05_32565157_T_C and Gm05_32327497_T_C. qPsan5.1 was contributed by E13390 and explained about 6% of the disease resistance variation. qPsan16.1 was located at 39.01 cM between Gm16_35700223_G_T and Gm16_35933600/ Gm16_35816475. qPsan16.1 was from E13901 and could explain 5.5% of partial disease resistance. Further analysis indicated an additive interaction of qPsan5.1 and qPsan16.1 against P. sansomeana isolate MPS17-22. Marker assisted resistance spectrum analysis and progeny tests verified the two QDRL and their interaction patterns with other P. sansomeana isolates. Both QDRL can be quickly integrated into soybean varieties using marker assisted selection.
Assuntos
Resistência à Doença/genética , Glycine max/genética , Phytophthora/patogenicidade , Doenças das Plantas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Glycine max/microbiologiaRESUMO
KEY MESSAGE: WRKY transcription factors are among the largest families of transcriptional regulators. In this review, their pivotal role in modulating various signal transduction pathways during biotic and abiotic stresses is discussed. Transcription factors (TFs) are important constituents of plant signaling pathways that define plant responses against biotic and abiotic stimuli besides playing a role in response to internal signals which coordinate different interacting partners during developmental processes. WRKY TFs, deriving their nomenclature from their signature DNA-binding sequence, represent one of the largest families of transcriptional regulators found exclusively in plants. By modulating different signal transduction pathways, these TFs contribute to various plant processes including nutrient deprivation, embryogenesis, seed and trichome development, senescence as well as other developmental and hormone-regulated processes. A growing body of research suggests transcriptional regulation of WRKY TFs in adapting plant to a variety of stressed environments. WRKY TFs can regulate diverse biological functions from receptors for pathogen triggered immunity, modulator of chromatin for specific interaction and signal transfer through a complicated network of genes. Latest discoveries illustrate the interaction of WRKY proteins with other TFs to form an integral part of signaling webs that regulate several seemingly disparate processes and defense-related genes, thus establishing their significant contributions to plant immune response. The present review starts with a brief description on the structural characteristics of WRKY TFs followed by the sections that present recent evidence on their roles in diverse biological processes in plants. We provide a comprehensive overview on regulatory crosstalks involving WRKY TFs during multiple stress responses in plants and future prospects of WRKY TFs as promising molecular diagnostics for enhancing crop improvement.
Assuntos
Proteínas de Plantas/fisiologia , Estresse Fisiológico/fisiologia , Fatores de Transcrição/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Família Multigênica , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética , Transdução de Sinais , Fatores de Transcrição/químicaRESUMO
Nitrogen, the vital primary plant growth nutrient at deficit soil conditions, drastically affects the growth and yield of a crop. Over the years, excess use of inorganic nitrogenous fertilizers resulted in pollution, eutrophication and thereby demanding the reduction in the use of chemical fertilizers. Being a C4 plant with fibrous root system and high NUE, maize can be deployed to be the best candidate for better N uptake and utilization in nitrogen deficient soils. The maize germplasm sources has enormous genetic variation for better nitrogen uptake contributing traits. Adoption of single cross maize hybrids as well as inherent property of high NUE has helped maize cultivars to achieve the highest growth rate among the cereals during last decade. Further, considering the high cost of nitrogenous fertilizers, adverse effects on soil health and environmental impact, maize improvement demands better utilization of existing genetic variation for NUE via introgression of novel allelic combinations in existing cultivars. Marker assisted breeding efforts need to be supplemented with introgression of genes/QTLs related to NUE in ruling varieties and thereby enhancing the overall productivity of maize in a sustainable manner. To achieve this, we need mapped genes and network of interacting genes and proteins to be elucidated. Identified genes may be used in screening ideal maize genotypes in terms of better physiological functionality exhibiting high NUE. Future genome editing may help in developing lines with increased productivity under low N conditions in an environment of optimum agronomic practices. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01113-z.
RESUMO
KEY MESSAGE: The current review provides an updated, new insights into the regulation of transcription mediated underlying mechanisms of wheat plants to osmotic stress perturbations. Osmotic stress tolerance mechanisms being complex are governed by multiple factors at physiological, biochemical and at the molecular level, hence approaches like "OMICS" that can underpin mechanisms behind osmotic tolerance in wheat is of paramount importance. The transcription factors (TFs) are a class of molecular proteins, which are involved in regulation, modulation and orchestrating the responses of plants to a variety of environmental stresses. Recent reports have provided novel insights on the role of TFs in osmotic stress tolerance via direct molecular links. However, our knowledge on the regulatory role TFs during osmotic stress tolerance in wheat remains limited. The present review in its first part sheds light on the importance of studying the role of osmotic stress tolerance in wheat plants and second aims to decipher molecular mechanisms of TFs belonging to several classes, including DREB, NAC, MYB, WRKY and bHLH, which have been reported to engage in osmotic stress mediated gene expression in wheat and third part covers the systems biology approaches to understand the transcriptional regulation of osmotic stress and the role of long non-coding RNAs in response to osmotic stress with special emphasis on wheat. The current concept may lead to an understanding in molecular regulation and signalling interaction of TFs under osmotic stress to clarify challenges and problems for devising potential strategies to improve complex regulatory events involved in plant tolerance to osmotic stress adaptive pathways in wheat.
Assuntos
Regulação da Expressão Gênica de Plantas/genética , Pressão Osmótica , Triticum/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Pressão Osmótica/fisiologia , Transcrição Gênica/genética , Transcrição Gênica/fisiologia , Triticum/genéticaRESUMO
Saline environment cues distort the plant growth, development and crop yield. Epigenetics has emerged as one of the prime themes in plant functional genomics for molecular-stress-physiology research, as copious studies have provided new visions into the epigenetic control of stress adaptations. The epigenetic control is associated with the regulation of the expression of stress-related genes which also comprises many steady alterations inherited in next cellular generation as stress memory. These epigenetic amendments also implicate induction of small RNA (sRNA)-mediated fine-tuning of transcriptional and post-transcriptional regulations of gene expression. These tiny (19-24 nt) RNA species, particularly microRNAs (miRNAs) besides endogenous small interfering RNA (siRNA) have emerged as important responsive entities for epigenetic modulation of salt-stress effects on plants. There is a recent upsurge in development of tools and databases useful for prediction, identification and validation of small RNAs (sRNAs) and their target messenger RNAs (mRNAs). Therefore, these small but key regulatory molecules have received a wide attention in post-genomic era as potential targets for engineering stress tolerance in major glycophytic crops, though it is yet to be explored optimally. This review aims to provide critical updates on plant sRNAs as key epigenetic regulators of plant salt-stress responses, their target prediction and validation, computational tools and databases available for plant small RNAs, besides discussing their roles in salt-stress regulatory networks and adaptive mechanisms in plants, with special emphasis on their exploration for engineering salinity tolerance in plants.
Assuntos
Adaptação Fisiológica/genética , Fenômenos Fisiológicos Vegetais , RNA de Plantas/genética , Estresse Fisiológico/genética , Biotecnologia/métodos , Bases de Dados Genéticas , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Plantas/genética , Tolerância ao Sal/genéticaRESUMO
To sustainably increase wheat yield to meet the growing world population's food demand in the face of climate change, Conservation Agriculture (CA) is a promising approach. Still, there is a lack of genomic studies investigating the genetic basis of crop adaptation to CA. To dissect the genetic architecture of 19 morpho-physiological traits that could be involved in the enhanced adaptation and performance of genotypes under CA, we performed GWAS to identify MTAs under four contrasting production regimes viz., conventional tillage timely sown (CTTS), conservation agriculture timely sown (CATS), conventional tillage late sown (CTLS) and conservation agriculture late sown (CALS) using an association panel of 183 advanced wheat breeding lines along with 5 checks. Traits like Phi2 (Quantum yield of photosystem II; CATS:0.37, CALS: 0.31), RC (Relative chlorophyll content; CATS:55.51, CALS: 54.47) and PS1 (Active photosystem I centers; CATS:2.45, CALS: 2.23) have higher mean values in CA compared to CT under both sowing times. GWAS identified 80 MTAs for the studied traits across four production environments. The phenotypic variation explained (PVE) by these QTNs ranged from 2.15 to 40.22%. Gene annotation provided highly informative SNPs associated with Phi2, NPQ (Quantum yield of non-photochemical quenching), PS1, and RC which were linked with genes that play crucial roles in the physiological adaptation under both CA and CT. A highly significant SNP AX94651261 (9.43% PVE) was identified to be associated with Phi2, while two SNP markers AX94730536 (30.90% PVE) and AX94683305 (16.99% PVE) were associated with NPQ. Identified QTNs upon validation can be used in marker-assisted breeding programs to develop CA adaptive genotypes.
Assuntos
Adaptação Fisiológica , Agricultura , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Agricultura/métodos , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal/métodos , Fenótipo , Genoma de Planta , Genótipo , PãoRESUMO
The implication of molecular biology in crop improvement is now more than three decades old. Not surprisingly, technology has moved on, and there are a number of new techniques that may or may not come under the genetically modified (GM) banner and, therefore, GM regulations. In cisgenic technology, cisgenes from crossable plants are used and it is a single procedure of gene introduction whereby the problem of linkage drag of other genes is overcome. The gene used in cisgenic approach is similar compared with classical breeding and cisgenic plant should be treated equally as classically bred plant and differently from transgenic plants. Therefore, it offers a sturdy reference to treat cisgenic plants similarly as classically bred plants, by exemption of cisgenesis from the current GMO legislations. This review covers the implications of cisgenesis towards the sustainable development in the genetic improvement of crops and considers the prospects for the technology.
RESUMO
Wheat is highly affected by stripe rust disease, particularly under cooler environments, and the losses can reach up to 100 percent depending on the intensity of infection and the susceptibility of the genotype. The most effective method to manage this disease is the use of resistant varieties. In the present study, 192 wheat genotypes were evaluated for stripe rust resistance under field conditions and also in a laboratory using molecular markers. These lines included pre-breeding germplasm developed for rust resistance and some high-yielding commercially grown wheat varieties. Out of 192 genotypes, 53 were found to be resistant, and 29 showed moderate resistance reaction under field conditions, whereas the remaining genotypes were all either moderately susceptible or susceptible. Under controlled conditions, out of 109 genotypes, only 12 were found to be resistant to all the six virulent/pathogenic pathotypes. Additionally, a selection of 97 genotypes were found resistant in field screening and were subjected to molecular validation using the markers linked to major R-genes, viz., Yr5, Yr10, Yr15 and Yr17. Nine genotypes possessed the Yr5 gene, twelve had the Yr10 gene, fourteen had the Yr15 gene and thirty-two had the Yr17 gene. The resistance genes studied in the current study are effective in conferring resistance against stripe rust disease. The genotypes identified as resistant under both field and controlled conditions can be used as sources in stripe rust resistance breeding programs.
RESUMO
In this study, the genetic relatedness of 82 walnut genotypes adapted to the North Western Himalayan region of Jammu and Kashmir, India was analyzed by combination of 13 SSR and 20 RAPD primers. A high level of genetic diversity was observed within populations with the number of alleles per locus ranging from one to five in case of SSR primers and two to six in case of RAPD primers, the proportion of polymorphic loci was 100 %, and similarity ranged from 12 % to 79 % with an average of 49 %. Dendrogram showed that all the accessions formed four main clusters with various degree of sub-clustering within the clusters. These results have implications for walnut breeding and conservation.
RESUMO
Abscisic acid (ABA) is a plant growth regulator known for its functions, especially in seed maturation, seed dormancy, adaptive responses to biotic and abiotic stresses, and leaf and bud abscission. ABA activity is governed by multiple regulatory pathways that control ABA biosynthesis, signal transduction, and transport. The transport of the ABA signaling molecule occurs from the shoot (site of synthesis) to the fruit (site of action), where ABA receptors decode information as fruit maturation begins and is significantly promoted. The maximum amount of ABA is exported by the phloem from developing fruits during seed formation and initiation of fruit expansion. In the later stages of fruit ripening, ABA export from the phloem decreases significantly, leading to an accumulation of ABA in ripening fruit. Fruit growth, ripening, and senescence are under the control of ABA, and the mechanisms governing these processes are still unfolding. During the fruit ripening phase, interactions between ABA and ethylene are found in both climacteric and non-climacteric fruits. It is clear that ABA regulates ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism controlling the interaction between ABA and ethylene has not yet been discovered. The effects of ABA and ethylene on fruit ripening are synergistic, and the interaction of ABA with other plant hormones is an essential determinant of fruit growth and ripening. Reaction and biosynthetic mechanisms, signal transduction, and recognition of ABA receptors in fruits need to be elucidated by a more thorough study to understand the role of ABA in fruit ripening. Genetic modifications of ABA signaling can be used in commercial applications to increase fruit yield and quality. This review discusses the mechanism of ABA biosynthesis, its translocation, and signaling pathways, as well as the recent findings on ABA function in fruit development and ripening.
RESUMO
A Bowman-Birk protease, i.e., Mucuna pruriens trypsin inhibitor (MPTI), was purified from the seeds by 55.702-fold and revealed a single trypsin inhibitor on a zymogram with a specific activity of 202.31 TIU/mg of protein. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing conditions, the protease trypsin inhibitor fraction [i.e., trypsin inhibitor non-reducing (TINR)] exhibited molecular weights of 74 and 37 kDa, and under reducing conditions [i.e., trypsin inhibitor reducing (TIR)], 37 and 18 kDa. TINR-37 revealed protease inhibitor activity on native PAGE and 37 and 18 kDa protein bands on SDS-PAGE. TINR-74 showed peaks corresponding to 18.695, 37.39, 56.085, and 74.78 kDa on ultra-performance liquid chromatography (UPLC) coupled with electrospray ionization/quadrupole time-of-flight-mass spectrometry (ESI/QTOF-MS). Similarly, TINR-37 displayed 18.695 and 37.39 kDa peaks. Furthermore, TIR-37 and TIR-18 exhibited peaks corresponding to 37.39 and 18.695 kDa. Multiple peaks observed by the UPLC-ESI/QTOF analysis revealed the multimeric association, confirming the characteristic and functional features of Bowman-Birk inhibitors (BBIs). The multimeric association helps to achieve more stability, thus enhancing their functional efficiency. MPTI was found to be a competitive inhibitor which again suggested that it belongs to the BBI family of inhibitors, displayed an inhibitor constant of 1.3 × 10-6 M, and further demonstrates potent anti-inflammatory activity. The study provided a comprehensive basis for the identification of multimeric associates and their therapeutic potential, which could elaborate the stability and functional efficiency of the MPTI in the native state from M. pruriens.
RESUMO
Screening for drought tolerance requires precise techniques like phonemics, which is an emerging science aimed at non-destructive methods allowing large-scale screening of genotypes. Large-scale screening complements genomic efforts to identify genes relevant for crop improvement. Thirty maize inbred lines from various sources (exotic and indigenous) maintained at Dryland Agriculture Research Station were used in the current study. In the automated plant transport and imaging systems (LemnaTec Scanalyzer system for large plants), top and side view images were taken of the VIS (visible) and NIR (near infrared) range of the light spectrum to capture phenes. All images were obtained with a thermal imager. All sensors were used to collect images one day after shifting the pots from the greenhouse for 11 days. Image processing was done using pre-processing, segmentation and flowered by features' extraction. Different surrogate traits such as pixel area, plant aspect ratio, convex hull ratio and calliper length were estimated. A strong association was found between canopy temperature and above ground biomass under stress conditions. Promising lines in different surrogates will be utilized in breeding programmes to develop mapping populations for traits of interest related to drought resilience, in terms of improved tissue water status and mapping of genes/QTLs for drought traits.