Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genet Epidemiol ; 44(7): 759-777, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32741009

RESUMO

Imaging technology and machine learning algorithms for disease classification set the stage for high-throughput phenotyping and promising new avenues for genome-wide association studies (GWAS). Despite emerging algorithms, there has been no successful application in GWAS so far. We establish machine learning-based phenotyping in genetic association analysis as misclassification problem. To evaluate chances and challenges, we performed a GWAS based on automatically classified age-related macular degeneration (AMD) in UK Biobank (images from 135,500 eyes; 68,400 persons). We quantified misclassification of automatically derived AMD in internal validation data (4,001 eyes; 2,013 persons) and developed a maximum likelihood approach (MLA) to account for it when estimating genetic association. We demonstrate that our MLA guards against bias and artifacts in simulation studies. By combining a GWAS on automatically derived AMD and our MLA in UK Biobank data, we were able to dissect true association (ARMS2/HTRA1, CFH) from artifacts (near HERC2) and identified eye color as associated with the misclassification. On this example, we provide a proof-of-concept that a GWAS using machine learning-derived disease classification yields relevant results and that misclassification needs to be considered in analysis. These findings generalize to other phenotypes and emphasize the utility of genetic data for understanding misclassification structure of machine learning algorithms.


Assuntos
Erros de Diagnóstico/estatística & dados numéricos , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Aprendizado de Máquina , Degeneração Macular/genética , Proteínas/genética , Algoritmos , Estudo de Associação Genômica Ampla , Humanos , Funções Verossimilhança , Modelos Genéticos , Fenótipo , Reino Unido
2.
Kidney Int ; 99(4): 926-939, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33137338

RESUMO

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.


Assuntos
Estudo de Associação Genômica Ampla , Rim , Proteínas Quinases Ativadas por AMP , Creatinina , Taxa de Filtração Glomerular/genética , Humanos , Isomerases de Dissulfetos de Proteínas , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA