Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468654

RESUMO

Therapies for heart failure with preserved ejection fraction (HFpEF) are lacking. Growth hormone-releasing hormone agonists (GHRH-As) have salutary effects in ischemic and nonischemic heart failure animal models. Accordingly, we hypothesized that GHRH-A treatment ameliorates chronic kidney disease (CKD)-induced HFpEF in a large-animal model. Female Yorkshire pigs (n = 16) underwent 5/6 nephrectomy via renal artery embolization and 12 wk later were randomized to receive daily subcutaneous injections of GHRH-A (MR-409; n = 8; 30 µg/kg) or placebo (n = 8) for 4 to 6 wk. Renal and cardiac structure and function were serially assessed postembolization. Animals with 5/6 nephrectomy exhibited CKD (elevated blood urea nitrogen [BUN] and creatinine) and faithfully recapitulated the hemodynamic features of HFpEF. HFpEF was demonstrated at 12 wk by maintenance of ejection fraction associated with increased left ventricular mass, relative wall thickness, end-diastolic pressure (EDP), end-diastolic pressure/end-diastolic volume (EDP/EDV) ratio, and tau, the time constant of isovolumic diastolic relaxation. After 4 to 6 wk of treatment, the GHRH-A group exhibited normalization of EDP (P = 0.03), reduced EDP/EDV ratio (P = 0.018), and a reduction in myocardial pro-brain natriuretic peptide protein abundance. GHRH-A increased cardiomyocyte [Ca2+] transient amplitude (P = 0.009). Improvement of the diastolic function was also evidenced by increased abundance of titin isoforms and their ratio (P = 0.0022). GHRH-A exerted a beneficial effect on diastolic function in a CKD large-animal model as demonstrated by improving hemodynamic, structural, and molecular characteristics of HFpEF. These findings have important therapeutic implications for the HFpEF syndrome.


Assuntos
Cardiotônicos/farmacologia , Hormônio Liberador de Hormônio do Crescimento/agonistas , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Sermorelina/análogos & derivados , Volume Sistólico/fisiologia , Animais , Nitrogênio da Ureia Sanguínea , Cálcio/metabolismo , Conectina/genética , Conectina/metabolismo , Creatinina/sangue , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Nefrectomia/métodos , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Sermorelina/farmacologia , Suínos
2.
Biochem J ; 476(24): 3769-3789, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31803904

RESUMO

The atherosclerosis prone LDL receptor knockout mice (Ldlr-/-, C57BL/6J background) carry a deletion of the NADP(H)-transhydrogenase gene (Nnt) encoding the mitochondrial enzyme that catalyzes NADPH synthesis. Here we hypothesize that both increased NADPH consumption (due to increased steroidogenesis) and decreased NADPH generation (due to Nnt deficiency) in Ldlr-/- mice contribute to establish a macrophage oxidative stress and increase atherosclerosis development. Thus, we compared peritoneal macrophages and liver mitochondria from three C57BL/6J mice lines: Ldlr and Nnt double mutant, single Nnt mutant and wild-type. We found increased oxidants production in both mitochondria and macrophages according to a gradient: double mutant > single mutant > wild-type. We also observed a parallel up-regulation of mitochondrial biogenesis (PGC1a, TFAM and respiratory complexes levels) and inflammatory (iNOS, IL6 and IL1b) markers in single and double mutant macrophages. When exposed to modified LDL, the single and double mutant cells exhibited significant increases in lipid accumulation leading to foam cell formation, the hallmark of atherosclerosis. Nnt deficiency cells showed up-regulation of CD36 and down-regulation of ABCA1 transporters what may explain lipid accumulation in macrophages. Finally, Nnt wild-type bone marrow transplantation into LDLr-/- mice resulted in reduced diet-induced atherosclerosis. Therefore, Nnt plays a critical role in the maintenance of macrophage redox, inflammatory and cholesterol homeostasis, which is relevant for delaying the atherogenesis process.


Assuntos
Aterosclerose/metabolismo , Macrófagos Peritoneais/metabolismo , NADP/metabolismo , Estresse Oxidativo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Biomarcadores , Antígenos CD36/metabolismo , Dieta Hiperlipídica , Regulação da Expressão Gênica , Genótipo , Glutationa/metabolismo , Inflamação , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mutação , NADP Trans-Hidrogenases , Receptores de LDL/genética , Superóxidos/metabolismo
3.
Circ Res ; 116(11): 1744-52, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25868464

RESUMO

RATIONALE: Coronary artery disease, the direct result of atherosclerosis, is the most common cause of death in Western societies. Vascular smooth muscle cell (VSMC) apoptosis occurs during the progression of atherosclerosis and in advanced lesions and promotes plaque necrosis, a common feature of high-risk/vulnerable atherosclerotic plaques. Akt1, a serine/threonine protein kinase, regulates several key endothelial cell and VSMC functions including cell growth, migration, survival, and vascular tone. Although global deficiency of Akt1 results in impaired angiogenesis and massive atherosclerosis, the specific contribution of VSMC Akt1 remains poorly characterized. OBJECTIVE: To investigate the contribution of VSMC Akt1 during atherogenesis and in established atherosclerotic plaques. METHODS AND RESULTS: We generated 2 mouse models in which Akt1 expression can be suppressed specifically in VSCMs before (Apoe(-/-)Akt1(fl/fl)Sm22α(CRE)) and after (Apoe(-/-)Akt1(fl/fl)SM-MHC-CreER(T2E)) the formation of atherosclerotic plaques. This approach allows us to interrogate the role of Akt1 during the initial and late steps of atherogenesis. The absence of Akt1 in VSMCs during the progression of atherosclerosis results in larger atherosclerotic plaques characterized by bigger necrotic core areas, enhanced VSMC apoptosis, and reduced fibrous cap and collagen content. In contrast, VSMC Akt1 inhibition in established atherosclerotic plaques does not influence lesion size but markedly reduces the relative fibrous cap area in plaques and increases VSMC apoptosis. CONCLUSIONS: Akt1 expression in VSMCs influences early and late stages of atherosclerosis. The absence of Akt1 in VSMCs induces features of plaque vulnerability including fibrous cap thinning and extensive necrotic core areas. These observations suggest that interventions enhancing Akt1 expression specifically in VSMCs may lessen plaque progression.


Assuntos
Aterosclerose/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apoptose/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Western Blotting , Proliferação de Células/genética , Células Cultivadas , Citocinas/genética , Progressão da Doença , Imunofluorescência , Expressão Gênica , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
4.
FASEB J ; 29(2): 597-610, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25392271

RESUMO

Atherosclerosis is the major cause of death and disability in diabetic and obese subjects with insulin resistance. Akt2, a phosphoinositide-dependent serine-threonine protein kinase, is highly express in insulin-responsive tissues; however, its role during the progression of atherosclerosis remains unknown. Thus, we aimed to investigate the contribution of Akt2 during the progression of atherosclerosis. We found that germ-line Akt2-deficient mice develop similar atherosclerotic plaques as wild-type mice despite higher plasma lipids and glucose levels. It is noteworthy that transplantation of bone marrow cells isolated from Akt2(-/-) mice to Ldlr(-/-) mice results in marked reduction of the progression of atherosclerosis compared with Ldlr(-/-) mice transplanted with wild-type bone marrow cells. In vitro studies indicate that Akt2 is required for macrophage migration in response to proatherogenic cytokines (monocyte chemotactic protein-1 and macrophage colony-stimulating factor). Moreover, Akt2(-/-) macrophages accumulate less cholesterol and have an alternative activated or M2-type phenotype when stimulated with proinflammatory cytokines. Together, these results provide evidence that macrophage Akt2 regulates migration, the inflammatory response and cholesterol metabolism and suggest that targeting Akt2 in macrophages might be beneficial for treating atherosclerosis.


Assuntos
Aterosclerose/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Glicemia/metabolismo , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Movimento Celular , Colesterol/metabolismo , Citocinas/metabolismo , Progressão da Doença , Inflamação , Insulina/química , Leucócitos/citologia , Lipídeos/sangue , Lipoproteínas LDL/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia de Fluorescência , Placa Aterosclerótica , Receptores de LDL/genética
5.
Circ Res ; 112(12): 1592-601, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23519695

RESUMO

RATIONALE: Foam cell formation because of excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis, the major cause of morbidity and mortality in Western societies. Liver X nuclear receptors (LXRs) regulate the expression of the adenosine triphosphate-binding cassette (ABC) transporters, including adenosine triphosphate-binding cassette transporter A1 (ABCA1) and adenosine triphosphate-binding cassette transporter G1 (ABCG1). ABCA1 and ABCG1 facilitate the efflux of cholesterol from macrophages and regulate high-density lipoprotein (HDL) biogenesis. Increasing evidence supports the role of microRNA (miRNAs) in regulating cholesterol metabolism through ABC transporters. OBJECTIVE: We aimed to identify novel miRNAs that regulate cholesterol metabolism in macrophages stimulated with LXR agonists. METHODS AND RESULTS: To map the miRNA expression signature of macrophages stimulated with LXR agonists, we performed an miRNA profiling microarray analysis in primary mouse peritoneal macrophages stimulated with LXR ligands. We report that LXR ligands increase miR-144 expression in macrophages and mouse livers. Overexpression of miR-144 reduces ABCA1 expression and attenuates cholesterol efflux to apolipoproteinA1 in macrophages. Delivery of miR-144 oligonucleotides to mice attenuates ABCA1 expression in the liver, reducing HDL levels. Conversely, silencing of miR-144 in mice increases the expression of ABCA1 and plasma HDL levels. Thus, miR-144 seems to regulate both macrophage cholesterol efflux and HDL biogenesis in the liver. CONCLUSIONS: miR-144 regulates cholesterol metabolism via suppressing ABCA1 expression and modulation of miRNAs may represent a potential therapeutical intervention for treating dyslipidemia and atherosclerotic vascular disease.


Assuntos
HDL-Colesterol/sangue , Hepatócitos/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Apolipoproteína A-I/metabolismo , Células COS , Chlorocebus aethiops , Dieta Hiperlipídica , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Homeostase , Humanos , Hidrocarbonetos Fluorados/farmacologia , Receptores X do Fígado , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/metabolismo , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Sulfonamidas/farmacologia
6.
Arterioscler Thromb Vasc Biol ; 34(2): 251-4, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24334870

RESUMO

OBJECTIVE: One of the major risk factors for atherosclerosis is the plasma level of low-density lipoprotein (LDL), which is a product of very-low-density lipoprotein (VLDL). Hepatic apolipoprotein B100 (apoB100) is the essential component that provides structural stability to VLDL particles. Newly translated apoB100 is partially lipidated in the endoplasmic reticulum (ER), forming nascent apoB100-VLDL particles. These particles are further modified to form fully mature VLDLs in the Golgi apparatus. Therefore, the transport of nascent VLDL from the ER to the Golgi represents a critical step during VLDL maturation and secretion and in regulating serum LDL cholesterol levels. Our previous studies showed that apoB100 exits the ER in coat complex II vesicles (COPII), but the cohort of related factors that control trafficking is poorly defined. APPROACH AND RESULTS: Expression levels of Kelch-like protein 12 (KLHL12), an adaptor protein known to assist COPII-dependent transport of procollagen, were manipulated by using a KLHL12-specific small interfering RNA and a KLHL12 expression plasmid in the rat hepatoma cell line, McArdle RH7777. KLHL12 knockdown decreased the secreted and intracellular pools of apoB100, an effect that was attenuated in the presence of an autophagy inhibitor. KLHL12 knockdown also significantly reduced secretion of the most lipidated apoB100-VLDL species and led to the accumulation of apoB100 in the ER. Consistent with these data, KLHL12 overexpression increased apoB100 recovery and apoB100-VLDL secretion. Images obtained from confocal microscopy revealed colocalization of apoB100 and KLHL12, further supporting a direct link between KLHL12 function and VLDL trafficking from the ER. CONCLUSIONS: KLHL12 plays a critical role in facilitating the ER exit and secretion of apoB100-VLDL particles, suggesting that KLHL12 modulation would influence plasma lipid levels.


Assuntos
Apolipoproteína B-100/metabolismo , Hepatócitos/metabolismo , Lipoproteínas VLDL/metabolismo , Proteínas dos Microfilamentos/metabolismo , Vesículas Secretórias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Proteínas dos Microfilamentos/genética , Transporte Proteico , Interferência de RNA , Ratos , Transfecção
7.
Nitric Oxide ; 36: 58-66, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24333561

RESUMO

Previous studies from our group have demonstrated the protective effect of S-nitroso-N-acetylcysteine (SNAC) on the cardiovascular system in dyslipidemic LDLr-/- mice that develop atheroma and left ventricular hypertrophy after 15 days on a high fat diet. We have shown that SNAC treatment attenuates plaque development via the suppression of vascular oxidative stress and protects the heart from structural and functional myocardial alterations, such as heart arrhythmia, by reducing cardiomyocyte sensitivity to catecholamines. Here we investigate the ability of SNAC to modulate oxidative stress and cell survival in cardiomyocytes during remodeling and correlation with ß2-AR signaling in mediating this protection. Ventricular superoxide (O2⁻) and hydrogen peroxide (H2O2) generation was measured by HPLC methods to allow quantification of dihydroethidium (DHE) products. Ventricular histological sections were stained using terminal dUTP nick-end labeling (TUNEL) to identify nuclei with DNA degradation (apoptosis) and this was confirmed by Western blot for cleaved caspase-3 and caspase-7 protein expression. The findings show that O2⁻ and H2O2 production and also cell apoptosis were increased during left ventricular hypertrophy (LVH). SNAC treatment reduced oxidative stress during on cardiac remodeling, measured by decreased H2O2 and O2⁻ production (65% and 52%, respectively), and a decrease in the ratio of p-Ser1177 eNOS/total eNOS. Left ventricle (LV) from SNAC-treated mice revealed a 4-fold increase in ß2-AR expression associated with coupling change to Gi; ß2-ARs-S-nitrosation (ß2-AR-SNO) increased 61%, while apoptosis decreased by 70%. These results suggest that the cardio-protective effect of SNAC treatment is primarily through its anti-oxidant role and is associated with ß2-ARs overexpression and ß2-AR-SNO via an anti-apoptotic pathway.


Assuntos
Acetilcisteína/análogos & derivados , Regulação da Expressão Gênica , Nitrogênio/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores de LDL/genética , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose , Dislipidemias , Retículo Endoplasmático/metabolismo , Peróxido de Hidrogênio/química , Hipertrofia Ventricular Esquerda , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos
8.
Arterioscler Thromb Vasc Biol ; 33(5): 886-93, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23430613

RESUMO

OBJECTIVE: The persistence of myeloid-derived cells in the artery wall is a characteristic of advanced atherosclerotic plaques. However, the mechanisms by which these cells are retained are poorly understood. Semaphorins, a class of neuronal guidance molecules, play a critical role in vascular patterning and development, and recent studies suggest that they may also have immunomodulatory functions. The present study evaluates the expression of Semaphorin 3E (Sema3E) in settings relevant to atherosclerosis and its contribution to macrophage accumulation in plaques. APPROACH AND RESULTS: Immunofluorescence staining of Sema3E, and its receptor PlexinD1, demonstrated their expression in macrophages of advanced atherosclerotic lesions of Apoe(-/-) mice. Notably, in 2 different mouse models of atherosclerosis regression, Sema3E mRNA was highly downregulated in plaque macrophages, coincident with a reduction in plaque macrophage content and an enrichment in markers of reparative M2 macrophages. In vitro, Sema3E mRNA was highly expressed in inflammatory M1 macrophages and in macrophages treated with physiological drivers of plaque progression and inflammation, such as oxidized low-density lipoprotein and hypoxia. To explore mechanistically how Sema3E affects macrophage behavior, we treated macrophages with recombinant protein in the presence/absence of chemokines, including CCL19, a chemokine implicated in the egress of macrophages from atherosclerotic plaques. Sema3E blocked actin polymerization and macrophage migration stimulated by the chemokines, suggesting that it may immobilize these cells in the plaque. CONCLUSIONS: Sema3E is upregulated in macrophages of advanced plaques, is dynamically regulated by multiple atherosclerosis-relevant factors, and acts as a negative regulator of macrophage migration, which may promote macrophage retention and chronic inflammation in vivo.


Assuntos
Glicoproteínas/fisiologia , Macrófagos/fisiologia , Proteínas de Membrana/fisiologia , Placa Aterosclerótica/metabolismo , Animais , Movimento Celular , Células Cultivadas , Quimiocina CCL2/farmacologia , Proteínas do Citoesqueleto , Camundongos , Camundongos Endogâmicos C57BL , Semaforinas , Proteína cdc42 de Ligação ao GTP/metabolismo
9.
J AOAC Int ; 96(1): 212-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23513979

RESUMO

Sulfonamides are one class of antimicrobial agents used in aquaculture production. Sulfonamides are often overused because they are inexpensive and readily available. Their presence at a concentration above the legal limits is a potential hazard to human health. Brazilian authorities have included in the National Regulatory Monitoring Program the control of the three most widely used sulfonamides in aquaculture production, i.e., sulfathiazole, sulfamethazine, and sulfadimethoxine. An LC method with UV detection for the determination of residual sulfonamides in fish muscle, using sulfapyridine as an internal standard has been developed and validated. The validation was performed according to the Brazilian Regulation 24/2009 (equivalent to European Union Decision 2002/657/EC). The method meets the Brazilian regulatory requirement that establishes criteria and procedures for determination of parameters such as decision limit (CCalpha), detection capability (CCbeta), precision, and recovery. For fish muscle, CCalpha was determined at 3.63, 2.91, and 7.46 microg/kg for sulfathiazole, sulfamethazine, and sulfadimethoxine, respectively. CCbeta was 9.39, 14.54, and 9.39 microg/kg for sulfathiazole, sulfamethazine, and sulfadimethoxine, respectively. For shrimp, CCalpha was 11.5, 8.67, and 4.46 microg/kg for sulfathiazole, sulfamethazine, and sulfadimethoxine, respectively. CCbeta was 18, 11.93, and 5.24 microg/kg for sulfathiazole, sulfamethazine, and sulfadimethoxine, respectively. A complete statistical analysis was performed on the results obtained. The results indicate that the method is robust when subjected to day-to-day analytical variations.


Assuntos
Cromatografia Líquida/métodos , Resíduos de Drogas/análise , Sulfonamidas/análise , Animais , União Europeia , Peixes , Músculos/química , Penaeidae , Espectrofotometria Ultravioleta
10.
Cardiovasc Res ; 118(18): 3586-3601, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35704032

RESUMO

AIMS: To test the hypothesis that the activation of the growth hormone-releasing hormone (GHRH) receptor signalling pathway within the myocardium both prevents and reverses diastolic dysfunction and pathophysiologic features consistent with heart failure with preserved ejection fraction (HFpEF). Impaired myocardial relaxation, fibrosis, and ventricular stiffness, among other multi-organ morbidities, characterize the phenotype underlying the HFpEF syndrome. Despite the rapidly increasing prevalence of HFpEF, few effective therapies have emerged. Synthetic agonists of the GHRH receptors reduce myocardial fibrosis, cardiomyocyte hypertrophy, and improve performance in animal models of ischaemic cardiomyopathy, independently of the growth hormone axis. METHODS AND RESULTS: CD1 mice received 4- or 8-week continuous infusion of angiotensin-II (Ang-II) to generate a phenotype with several features consistent with HFpEF. Mice were administered either vehicle or a potent synthetic agonist of GHRH, MR-356 for 4-weeks beginning concurrently or 4-weeks following the initiation of Ang-II infusion. Ang-II-treated animals exhibited diastolic dysfunction, ventricular hypertrophy, interstitial fibrosis, and normal ejection fraction. Cardiomyocytes isolated from these animals exhibited incomplete relaxation, depressed contractile responses, altered myofibrillar protein phosphorylation, and disturbed calcium handling mechanisms (ex vivo). MR-356 both prevented and reversed the development of the pathological phenotype in vivo and ex vivo. Activation of the GHRH receptors increased cAMP and cGMP in cardiomyocytes isolated from control animals but only cAMP in cardiac fibroblasts, suggesting that GHRH-A exert differential effects on cardiomyocytes and fibroblasts. CONCLUSION: These findings indicate that the GHRH receptor signalling pathway(s) represents a new molecular target to counteract dysfunctional cardiomyocyte relaxation by targeting myofilament phosphorylation and fibrosis. Accordingly, activation of GHRH receptors with potent, synthetic GHRH agonists may provide a novel therapeutic approach to management of the myocardial alterations associated with the HFpEF syndrome.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Camundongos , Animais , Insuficiência Cardíaca/metabolismo , Volume Sistólico/fisiologia , Cardiomiopatias/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Fibrose
11.
Front Cardiovasc Med ; 8: 667298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322524

RESUMO

Investigations into the regulatory mechanisms controlling cholesterol homeostasis have proven fruitful in identifying low-density lipoprotein (LDL)-lowering therapies to reduce the risk of atherosclerotic cardiovascular disease. A major advance was the discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9), a secreted protein that binds the LDL receptor (LDLR) on the cell surface and internalizes it for degradation, thereby blunting its ability to take up circulating LDL. The discovery that loss-of-function mutations in PCSK9 lead to lower plasma levels of LDL cholesterol and protection from cardiovascular disease led to the therapeutic development of PCSK9 inhibitors at an unprecedented pace. However, there remain many gaps in our understanding of PCSK9 regulation and biology, including its posttranscriptional control by microRNAs. Using a high-throughput region(3'-UTR) of human microRNA library screen, we identified microRNAs targeting the 3' untranslated region of human PCSK9. The top 35 hits were confirmed by large-format PCSK9 3'-UTR luciferase assays, and 10 microRNAs were then selected for further validation in hepatic cells, including effects on PCSK9 secretion and LDLR cell surface expression. These studies identified seven novel microRNAs that reduce PCSK9 expression, including miR-221-5p, miR-342-5p, miR-363-5p, miR-609, miR-765, and miR-3165. Interestingly, several of these microRNAs were also found to target other genes involved in LDLR regulation and potently upregulate LDLR cell surface expression in hepatic cells. Together, these data enhance our understanding of post-transcriptional regulators of PCSK9 and their potential for therapeutic manipulation of hepatic LDLR expression.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34790975

RESUMO

INTRODUCTION: Induced pluripotent stem cells (iPSCs) provide a model of cardiomyocyte (CM) maturation. Nitric oxide signaling promotes CM differentiation and maturation, although the mechanisms remain controversial. AIM: The study tested the hypothesis that in the absence of S-nitrosoglutathione reductase (GSNOR), a denitrosylase regulating protein S-nitrosylation, the resultant increased S-nitrosylation accelerates the differentiation and maturation of iPSC-derived cardiomyocytes (CMs). METHODS AND RESULTS: iPSCs derived from mice lacking GSNOR (iPSCGSNOR-/-) matured faster than wildtype iPSCs (iPSCWT) and demonstrated transient increases in expression of murine Snail Family Transcriptional Repressor 1 gene (Snail), murine Snail Family Transcriptional Repressor 2 gene (Slug) and murine Twist Family BHLH Transcription Factor 1 gene (Twist), transcription factors that promote epithelial-to-mesenchymal transition (EMT) and that are regulated by Glycogen Synthase Kinase 3 Beta (GSK3ß). Murine Glycogen Synthase Kinase 3 Beta (Gsk3ß) gene exhibited much greater S-nitrosylation, but lower expression in iPSCGSNOR-/-. S-nitrosoglutathione (GSNO)-treated iPSCWT and human (h)iPSCs also demonstrated reduced expression of GSK3ß. Nkx2.5 expression, a CM marker, was increased in iPSCGSNOR-/- upon directed differentiation toward CMs on Day 4, whereas murine Brachyury (t), Isl1, and GATA Binding Protein (Gata4) mRNA were decreased, compared to iPSCWT, suggesting that GSNOR deficiency promotes CM differentiation beginning immediately following cell adherence to the culture dish-transitioning from mesoderm to cardiac progenitor. CONCLUSION: Together these findings suggest that increased S-nitrosylation of Gsk3ß promotes CM differentiation and maturation from iPSCs. Manipulating the post-translational modification of GSK3ß may provide an important translational target and offers new insight into understanding of CM differentiation from pluripotent stem cells. ONE SENTENCE SUMMARY: Deficiency of GSNOR or addition of GSNO accelerates early differentiation and maturation of iPSC-cardiomyocytes.

13.
Biomolecules ; 11(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430172

RESUMO

Endothelial dysfunction precedes atherosclerosis and is an independent predictor of cardiovascular events. Cholesterol levels and oxidative stress are key contributors to endothelial damage, whereas high levels of plasma high-density lipoproteins (HDL) could prevent it. Cholesteryl ester transfer protein (CETP) is one of the most potent endogenous negative regulators of HDL-cholesterol. However, whether and to what degree CETP expression impacts endothelial function, and the molecular mechanisms underlying the vascular effects of CETP on endothelial cells, have not been addressed. Acetylcholine-induced endothelium-dependent relaxation of aortic rings was impaired in human CETP-expressing transgenic mice, compared to their non-transgenic littermates. However, endothelial nitric oxide synthase (eNOS) activation was enhanced. The generation of superoxide and hydrogen peroxide was increased in aortas from CETP transgenic mice, while silencing CETP in cultured human aortic endothelial cells effectively decreased oxidative stress promoted by all major sources of ROS: mitochondria and NOX2. The endoplasmic reticulum stress markers, known as GADD153, PERK, and ARF6, and unfolded protein response effectors, were also diminished. Silencing CETP reduced endothelial tumor necrosis factor (TNF) α levels, intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expression, diminishing monocyte adhesion. These results support the notion that CETP expression negatively impacts endothelial cell function, revealing a new mechanism that might contribute to atherosclerosis.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Estresse Oxidativo , Animais , Caveolinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/genética , Estresse do Retículo Endoplasmático , Ativação Enzimática , Humanos , Camundongos Transgênicos , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Vasodilatação
14.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268364

RESUMO

The degree to which populations of cardiac progenitors (CPCs) persist in the postnatal heart remains a controversial issue in cardiobiology. To address this question, we conducted a spatiotemporally resolved analysis of CPC deployment dynamics, tracking cells expressing the pan-CPC gene Isl1 Most CPCs undergo programmed silencing during early cardiogenesis through proteasome-mediated and PRC2 (Polycomb group repressive complex 2)-mediated Isl1 repression, selectively in the outflow tract. A notable exception is a domain of cardiac neural crest cells (CNCs) in the inflow tract. These "dorsal CNCs" are regulated through a Wnt/ß-catenin/Isl1 feedback loop and generate a limited number of trabecular cardiomyocytes that undergo multiple clonal divisions during compaction, to eventually produce ~10% of the biventricular myocardium. After birth, CNCs continue to generate cardiomyocytes that, however, exhibit diminished clonal amplification dynamics. Thus, although the postnatal heart sustains cardiomyocyte-producing CNCs, their regenerative potential is likely diminished by the loss of trabeculation-like proliferative properties.

15.
Front Physiol ; 11: 599379, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329050

RESUMO

An early event in atherogenesis is the recruitment and infiltration of circulating monocytes and macrophage activation in the subendothelial space. Atherosclerosis subsequently progresses as a unresolved inflammatory disease, particularly in hypercholesterolemic conditions. Although physical exercise training has been a widely accepted strategy to inhibit atherosclerosis, its impact on arterial wall inflammation and macrophage phenotype and function has not yet been directly evaluated. Thus, the aim of this study was to investigate the effects of aerobic exercise training on the inflammatory state of atherosclerotic lesions with a focus on macrophages. Hypercholesterolemic LDL-receptor-deficient male mice were subjected to treadmill training for 8 weeks and fed a high-fat diet. Analyses included plasma lipoprotein and cytokine levels; aortic root staining for lipids (oil red O); macrophages (CD68, MCP1 and IL1ß); oxidative (nitrotyrosine and, DHE) and endoplasmic reticulum (GADD) stress markers. Primary bone marrow-derived macrophages (BMDM) were assayed for migration activity, motility phenotype (Rac1 and F-actin) and inflammation-related gene expression. Plasma levels of HDL cholesterol were increased, while levels of proinflammatory cytokines (TNFa, IL1b, and IL6) were markedly reduced in the exercised mice. The exercised mice developed lower levels of lipid content and inflammation in atherosclerotic plaques. Additionally, lesions in the exercised mice had lower levels of oxidative and ER stress markers. BMDM isolated from the exercised mice showed a marked reduction in proinflammatory cytokine gene expression and migratory activity and a disrupted motility phenotype. More importantly, bone marrow from exercised mice transplanted into sedentary mice led to reduced atherosclerosis in the recipient sedentary mice, thus suggesting that epigenetic mechanisms are associated with exercise. Collectively, the presented data indicate that exercise training prevents atherosclerosis by inhibiting bone marrow-derived macrophage recruitment and activation.

16.
Front Cardiovasc Med ; 7: 81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528976

RESUMO

MicroRNAs (miRNA) have emerged as important post-transcriptional regulators of metabolic pathways that contribute to cellular and systemic lipoprotein homeostasis. Here, we identify two conserved miRNAs, miR-224, and miR-520d, which target gene networks regulating hepatic expression of the low-density lipoprotein (LDL) receptor (LDLR) and LDL clearance. In silico prediction of miR-224 and miR-520d target gene networks showed that they each repress multiple genes impacting the expression of the LDLR, including the chaperone molecules PCSK9 and IDOL that limit LDLR expression at the cell surface and the rate-limiting enzyme for cholesterol synthesis HMGCR, which is the target of LDL-lowering statin drugs. Using gain- and loss-of-function studies, we tested the role of miR-224 and miR-520d in the regulation of those predicted targets and their impact on LDLR expression. We show that overexpression of miR-224 or miR-520d dose-dependently reduced the activity of PCSK9, IDOL, and HMGCR 3'-untranslated region (3'-UTR)-luciferase reporter constructs and that this repression was abrogated by mutation of the putative miR-224 or miR-520d response elements in the PCSK9, IDOL, and HMGCR 3'-UTRs. Compared to a control miRNA, overexpression of miR-224 or miR-520d in hepatocytes inhibited PCSK9, IDOL, and HMGCR mRNA and protein levels and decreased PCSK9 secretion. Furthermore, miR-224 and miR-520d repression of PCSK9, IDOL, and HMGCR was associated with an increase in LDLR protein levels and cell surface expression, as well as enhanced LDL binding. Notably, the effects of miR-224 and miR-520d were additive to the effects of statins in upregulating LDLR expression. Finally, we show that overexpression of miR-224 in the livers of Ldlr +/- mice using lipid nanoparticle-mediated delivery resulted in a 15% decrease in plasma levels of LDL cholesterol, compared to a control miRNA. Together, these findings identify roles for miR-224 and miR-520d in the posttranscriptional control of LDLR expression and function.

17.
Front Physiol ; 10: 1182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616309

RESUMO

BACKGROUND: Endothelial dysfunction contributes to the pathophysiology of dilated cardiomyopathy (DCM). Allogeneic but not autologous mesenchymal stem cells (MSCs) improve endothelial function in DCM patients. We hypothesized that these effects are modulated by release of stromal derived factor-1α (SDF-1α). METHODS: Plasma TNFα and endothelial progenitor cell-colony forming units (EPC-CFUs) were assessed at baseline and 3-months post-injection in a subset of POSEIDON-DCM patients that received autologous (n = 11) or allogeneic (n = 10) MSCs. SDF-1α secretion by MSCs, endothelial cell (EC) TNFα mRNA expression, and levels of reactive oxygen species (ROS) in response to SDF-1α were measured in vitro. RESULTS: As previously shown, DCM patients (n = 21) had reduced EPC-CFUs at baseline (3 ± 3), which were restored to normal by allogeneic MSCs 3-months post-treatment (Δ10 ± 4). DCM patients had elevated baseline plasma TNFα (n = 15, 22 ± 9.4 pg/mL). Allogeneic MSCs (n = 8) decreased, and autologous MSCs (n = 7) increased, plasma TNFα (-7.1 ± 3.1 vs. 22.2 ± 17.1 pg/mL, respectively; P = 0.0005). In culture, autologous MSCs (n = 11) secreted higher levels of SDF-1α than allogeneic MSCs (n = 6) [76.0 (63.7, 100.9) vs. 22.8 (7.2, 43.5) pg/mL, P = 0.0002]. SDF-1α and plasma TNFα negatively correlated with EPC-CFUs in both treatment groups (R = -0.7, P = 0.0004). ECs treated with 20 ng SDF-1α expressed lower levels of TNFα mRNA than cells treated with 100 ng (0.7 ± 0.2 vs. 2.1 ± 0.3, P = 0.0008). SDF-1α at low but not high concentration inhibited the generation of ROS. CONCLUSION: MSC secretion of SDF-1α inversely correlates with EPC-CFU production in DCM patients and therefore may be a modulator of MSC therapeutic effect in this clinical setting. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT01392625, identifier NCT01392625.

19.
Oxid Med Cell Longev ; 2017: 1838679, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28163820

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the principal manifestation of liver disease in obesity and metabolic syndrome. By comparing hypertriglyceridemic transgenic mice expressing apolipoprotein (apo) CIII with control nontransgenic (NTg) littermates, we demonstrated that overexpression of apoCIII, independent of a high-fat diet (HFD), produces NAFLD-like features, including increased liver lipid content; decreased antioxidant power; increased expression of TNFα, TNFα receptor, cleaved caspase-1, and interleukin-1ß; decreased expression of adiponectin receptor-2; and increased cell death. This phenotype is aggravated and additional NAFLD features are differentially induced in apoCIII mice fed a HFD. HFD induced glucose intolerance together with increased gluconeogenesis, indicating hepatic insulin resistance. Additionally, the HFD led to marked increases in plasma TNFα (8-fold) and IL-6 (60%) in apoCIII mice. Cell death signaling (Bax/Bcl2), effector (caspase-3), and apoptosis were augmented in apoCIII mice regardless of whether a HFD or a low-fat diet was provided. Fenofibrate treatment reversed several of the effects associated with diet and apoCIII expression but did not normalize inflammatory traits even when liver lipid content was fully corrected. These results indicate that apoCIII and/or hypertriglyceridemia plays a major role in liver inflammation and cell death, which in turn increases susceptibility to and the severity of diet-induced NAFLD.


Assuntos
Apolipoproteína C-III/biossíntese , Hipertrigliceridemia/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Apolipoproteína C-III/metabolismo , Morte Celular/fisiologia , Dieta Hiperlipídica , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-28278125

RESUMO

Ractopamine (RAC), is a ß-adrenergic agonist increasingly used in the swine and cattle industry. This compound redirects nutrients to favour leanness rather than fat deposition, improves growth and carcass traits gaining higher economic benefit to producers. Countries around the world are split over whether to allow the use of RAC in meat production. Clenbuterol (CLB) and salbutamol (SLB) are anillinic and phenolic ß-agonists, respectively, with the same capacity of producing economic benefits for the meat sector. However, they are prohibited because of the potentially adverse reactions they can cause in consumers. The three ß-agonist compounds have been included in the Brazilian National Regulatory Survey and consequentially there is an eminent need for reliable methods capable of detecting those substances at the same time and reduce analytical costs. Therefore, an LC-MS/MS method for the simultaneous determination of residual RAC, CLB and SAL in swine and cattle muscle was developed and validated with quantification levels respecting the action levels established for Brazil which are 0.1, 0.2 and 5 µg kg-1 for RAC, CLB and SAL, respectively. Samples were quantified using RAC-d5, CLB-d9 and SLB-d6 as internal standards. The validation was performed according to European Union Decision 2002/657, which includes criteria (CCα, CCß, recovery, repeatability, reproducibility and calibration curve). The method meets the Brazilian regulatory requirement that establishes criteria and procedures for the determination of parameters such as CCα, CCß, precision and recovery. CCα values were 0.02, 0.21 and 5.42 µg kg-1 for RAC, CLB and SAL, respectively, in bovine and swine muscle samples; CCß values were 0.03, 0.22 and 5.8 µg kg-1 for RAC, CLB and SAL, respectively, in bovine and swine muscle samples. Average recoveries fortified with 0.05-7.5 µg kg-1 of the studied ß-agonist leads around 95%. The method was demonstrated to be suitable for the determination of RAC, CLB and SLB in swine and cattle muscle samples.


Assuntos
Albuterol/análise , Clembuterol/análise , Músculos/química , Fenetilaminas/análise , Animais , Brasil , Bovinos , Cromatografia Líquida de Alta Pressão , Laboratórios , Limite de Detecção , Suínos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA