Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Struct Biol ; 212(3): 107650, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096230

RESUMO

Understanding skeletal aging and predicting fracture risk is increasingly important with a growing elderly population. We hypothesized that when categorized by external bone size, the male femoral diaphysis would show different strength-age trajectories which can be explained by changes in morphology, composition and collagen cross-linking. Cadaveric male femora were sorted into narrow (n = 15, 26-89 years) and wide (n = 15, 29-82 years) groups based upon total cross-sectional area of the mid-shaft normalized to bone length (Tt.Ar/Le) and tested for whole bone strength, tissue-level strength, and tissue-level post-yield strain. Morphology, cortical TMD (Ct.TMD), porosity, direct measurements of enzymatic collagen cross-links, and pentosidine were obtained. The wide group alone showed significant negative correlations with age for tissue-level strength (R2 = 0.50, p = 0.002), tissue-level post-yield strain (R2 = 0.75, p < 0.001) and borderline significance for whole bone strength (R2 = 0.14, p = 0.108). Ct.TMD correlated with whole bone and tissue-level strength for both groups, but pentosidine normalized to enzymatic cross-links correlated negatively with all mechanical properties for the wide group only. The multivariate analysis showed that just three traits for each mechanical property explained the majority of the variance for whole bone strength (Ct.Area, Ct.TMD, Log(PEN/Mature; R2 = 0.75), tissue-level strength (Age, Ct.TMD, Log(DHLNL/HLNL); R2 = 0.56), and post-yield strain (Age, Log(Pyrrole), Ct.Area; R2 = 0.51). Overall, this highlights how inter-individual differences in bone structure, composition, and strength change with aging and that a one-size fits all understanding of skeletal aging is insufficient.


Assuntos
Densidade Óssea/fisiologia , Fêmur/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Colágeno/metabolismo , Fêmur/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
2.
Bone ; 163: 116481, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35817317

RESUMO

Bone strength is generally thought to decline with aging and prior work has compared traits between younger and older cohorts to identify the structural and compositional changes that contribute to fracture risk with age. However, for men, the majority of individuals do not fracture a bone in their lifetime. While fracture occurrence is multifactorial, the absence of fracture in the majority of males suggests that some individuals maintain bone strength or do not lose enough strength to fracture, whereas others do lose strength with aging. Consequently, not all structural and material changes observed with age may lead to strength-decline. We propose that consideration of different subgroups of older individuals will provide a more precise understanding of which structural and material changes directly contribute to strength-decline. We identified subgroups using latent profile analysis (LPA), which is a clustering-based algorithm that takes multiple continuous variables into account. Human cadaveric male femoral diaphyses (n = 33, 26-89 years) were subjected to whole bone and tissue-level mechanical tests. Morphological traits, porosity, and cortical tissue mineral density (Ct.TMD) were obtained, as were measures of enzymatic cross-links and the advanced glycation end product, pentosidine (PEN). A univariate analysis first identified a younger cohort (YNG, n = 11) and older cohort (n = 22). LPA was then conducted using three mechanical traits (whole bone strength, tissue-level strength, and tissue-level post-yield strain), resulting in a further stratification of the older group into two similarly aged groups (p = 0.558), but one with higher (OHM, n = 16) and another with lower mechanical properties (OLM, n = 6). The OLM group exhibited lower whole bone strength (p = 0.016), tissue-level strength (p < 0.001), and tissue-level post-yield strain (p < 0.001) compared to the YNG group. Meanwhile, the OHM only exhibited significantly lower tissue-level post-yield strain (p < 0.001), compared to the YNG group. Between the two older groups, the OHM group exhibited higher whole bone strength (p = 0.037), tissue-level strength (p = 0.006), and tissue-level post-yield strain (p = 0.012) than the OLM group. Probing the morphological and compositional relationships among the three groups, both OHM and OLM exhibited increased PEN content (p < 0.001, p = 0.008 respectively) and increased Log(cortical pore score) relative to YNG (p = 0.003, p < 0.001 respectively). Compared to the OHM group, the OLM also exhibited increased marrow area (p = 0.049), water content (p = 0.048), and decreased Ct.TMD (p = 0.005). The key traits that were unique to the OLM group compared to YNG were decreased Ct.TMD (p < 0.001) and increased Log(porosity) (p = 0.002). There were many properties that differed between the younger and older groups, but not all were associated with reduced mechanical properties, highlighting the relative importance of certain age-related traits such as porosity, Ct.TMD, water content, and marrow area that were unique to the OLM group. Overall, this work supports the hypothesis that there are subgroups of men showing different strength-decline trajectories with aging and establishes a basis for refining our understanding of which age-related changes are directly contributing to decreased strength.


Assuntos
Densidade Óssea , Fraturas Ósseas , Idoso , Fenômenos Biomecânicos , Osso e Ossos , Fêmur , Humanos , Masculino , Água
3.
J Biomech ; 139: 111144, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35623287

RESUMO

Region-specific differences in age-related bone remodeling are known to exist. We therefore hypothesized that the decline in tissue-level strength and post-yield strain (PYS) with age is not uniform within the femur, but is driven by region-specific differences in porosity and composition. Four-point bending was conducted on anterior, posterior, medial, and lateral beams from male cadaveric femora (n = 33, 18-89 yrs of age). Mid-cortical porosity, composition, and mineralization were assessed using nano-computed tomography (nanoCT), Raman spectroscopy, and ashing assays. Traits between bones from young and elderly groups were compared, while multivariate analyses were used to identify traits that predicted strength and PYS at the regional level. We show that age-related decline in porosity and mechanical properties varied regionally, with highest positive slope of age vs. Log(porosity) found in posterior and anterior bone, and steepest negative slopes of age vs. strength and age vs. PYS found in anterior bone. Multivariate analyses show that Log(porosity) and/or Raman 1246/1269 ratio explained 46-51% of the variance in strength in anterior and posterior bone. Three out of five traits related to Log(porosity), mineral crystallinity, 1246/1269, mineral/matrix ratio, and/or hydroxyproline/proline (Hyp/Pro) ratio, explained 35-50% of the variance in PYS in anterior, posterior and lateral bones. Log(porosity) and Hyp/Pro ratio alone explained 13% and 19% of the variance in strength and PYS in medial bone, respectively. The predictive performance of multivariate analyses was negatively impacted by pooling data across all bone regions, underscoring the complexity of the femur and that the use of pooled analyses may obscure underlying region-specific differences.


Assuntos
Osso e Ossos , Fêmur , Idoso , Densidade Óssea , Remodelação Óssea , Fêmur/diagnóstico por imagem , Humanos , Masculino , Minerais , Porosidade
4.
Bone ; 130: 115118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678490

RESUMO

Osteogenesis imperfecta (OI) is a rare and severe skeletal dysplasia marked by low bone mass and poor bone quality which is especially burdensome during childhood. Since clinical trials for pediatric OI are difficult, there is a widespread reliance on genetically modified murine models to understand the skeletal effects of emerging therapeutics. However a common model does not yet exist to understand how patient-specific genotype may influence treatment efficacy. Recently, sclerostin antibody (SclAb) has been introduced as a novel putative anabolic therapy for diseases of low bone mass, but effects in pediatric patients remain unexplored. In this study, we aim to establish a direct xenograft approach using OI patient-derived bone isolates which retain patient-specific genetic defects and cells residing in their intrinsic extracellular environment to evaluate the bone-forming effects of SclAb as a bridge to clinical trials. OI and age matched non-OI patient bone typically discarded as surgical waste during corrective orthopaedic procedures were collected, trimmed and implanted subcutaneously (s.c.) on the dorsal surface of 4-6-week athymic mice. A subset of implanted mice were evaluated at short (1 week), intermediate (4 week), and long-term (12 week) durations to assess bone cell survival and presence of donor bone cells in order to determine an appropriate treatment duration. Remaining implanted mice were randomly assigned to a two or four-week SclAb-treated (25mg/kg s.c. 2QW) or untreated control group. Immunohistochemistry determined osteocyte and osteoblast donor/host relationship, TRAP staining quantified osteoclast activity, and TUNEL assay was used to understand rates of bone cell apoptosis at each implantation timepoint. Longitudinal changes of in vivo µCT outcomes and dynamic histomorphometry were used to assess treatment response and ex vivo µCT and dynamic histomorphometry of host femora served as a positive internal control to confirm a bone forming response to SclAb. Human-derived osteocytes and lining cells were present up to 12 weeks post-implantation with nominal cell apoptosis in the implant. Sclerostin expression remained donor-derived throughout the study. Osterix expression was primarily donor-derived in treated implants and shifted in favor of the host when implants remained untreated. µCT measures of BMD, TMD, BV/TV and BV increased with treatment but response was variable and impacted by bone implant morphology (trabecular, cortical) which was corroborated by histomorphometry. There was no statistical difference between treated and untreated osteoclast number in the implants. Host femora confirmed a systemic bone forming effect of SclAb. Findings support use of the xenograft model using solid bone isolates to explore the effects of novel bone-targeted therapies. These findings will impact our understanding of SclAb therapy in pediatric OI tissue through establishing the efficacy of this treatment in human cells prior to extension to the clinic.


Assuntos
Osteogênese Imperfeita , Animais , Densidade Óssea , Criança , Glicoproteínas , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Osteogênese , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/tratamento farmacológico , Microtomografia por Raio-X
5.
J Bone Miner Res ; 34(5): 825-837, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30715752

RESUMO

Given prior work showing associations between remodeling and external bone size, we tested the hypothesis that wide bones would show a greater negative correlation between whole-bone strength and age compared with narrow bones. Cadaveric male radii (n = 37 pairs, 18 to 89 years old) were evaluated biomechanically, and samples were sorted into narrow and wide subgroups using height-adjusted robustness (total area/bone length). Strength was 54% greater (p < 0.0001) in wide compared with narrow radii for young adults (<40 years old). However, the greater strength of young-adult wide radii was not observed for older wide radii, as the wide (R2 = 0.565, p = 0.001), but not narrow (R2 = 0.0004, p = 0.944) subgroup showed a significant negative correlation between strength and age. Significant positive correlations between age and robustness (R2 = 0.269, p = 0.048), cortical area (Ct.Ar; R2 = 0.356, p = 0.019), and the mineral/matrix ratio (MMR; R2 = 0.293, p = 0.037) were observed for narrow, but not wide radii (robustness: R2 = 0.015, p = 0.217; Ct.Ar: R2 = 0.095, p = 0.245; MMR: R2 = 0.086, p = 0.271). Porosity increased with age for the narrow (R2 = 0.556, p = 0.001) and wide (R2 = 0.321, p = 0.022) subgroups. The wide subgroup (p < 0.0001) showed a significantly greater elevation of a new measure called the Cortical Pore Score, which quantifies the cumulative effect of pore size and location, indicating that porosity had a more deleterious effect on strength for wide compared with narrow radii. Thus, the divergent strength-age regressions implied that narrow radii maintained a low strength with aging by increasing external size and mineral content to mechanically offset increases in porosity. In contrast, the significant negative strength-age correlation for wide radii implied that the deleterious effect of greater porosity further from the centroid was not offset by changes in outer bone size or mineral content. Thus, the low strength of elderly male radii arose through different biomechanical mechanisms. Consideration of different strength-age regressions (trajectories) may inform clinical decisions on how best to treat individuals to reduce fracture risk. © 2019 American Society for Bone and Mineral Research.


Assuntos
Envelhecimento , Densidade Óssea , Rádio (Anatomia) , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Rádio (Anatomia)/metabolismo , Rádio (Anatomia)/patologia
6.
Bone ; 93: 79-85, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27641475

RESUMO

Sclerostin antibody has demonstrated a bone-forming effect in pre-clinical models of osteogenesis imperfecta, where mutations in collagen or collagen-associated proteins often result in high bone fragility in pediatric patients. Cessation studies in osteoporotic patients have demonstrated that sclerostin antibody, like intermittent PTH treatment, requires sequential anti-resorptive therapy to preserve the anabolic effects in adult populations. However, the persistence of anabolic gains from either drug has not been explored clinically in OI, or in any animal model. To determine whether cessation of sclerostin antibody therapy in a growing OI skeleton requires sequential anti-resorptive treatment to preserve anabolic gains in bone mass, we treated 3week old Brtl/+ and wild type mice for 5weeks with SclAb, and then withdrew treatment for an additional 6weeks. Trabecular bone loss was evident following cessation, but was preserved in a dose-dependent manner with single administration of pamidronate at the time of cessation. In vivo longitudinal near-infrared optical imaging of cathepsin K activation in the proximal tibia suggests an anti-resorptive effect of both SclAb and pamidronate which is reversed after three weeks of cessation. Cortical bone was considerably less susceptible to cessation effects, and showed no structural or functional deficits in the absence of pamidronate during this cessation period. In conclusion, while SclAb induces a considerable anabolic gain in the rapidly growing Brtl/+ murine model of OI, a single sequential dose of antiresorptive drug is required to maintain bone mass at trabecular sites for 6weeks following cessation.


Assuntos
Anticorpos/uso terapêutico , Osso e Ossos/patologia , Difosfonatos/uso terapêutico , Glicoproteínas/imunologia , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos/farmacologia , Fenômenos Biomecânicos , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Osso e Ossos/efeitos dos fármacos , Osso Cortical/diagnóstico por imagem , Osso Cortical/efeitos dos fármacos , Osso Cortical/patologia , Difosfonatos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/patologia , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Tamanho do Órgão/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese Imperfeita/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA