Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 19(6): e1011485, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384813

RESUMO

Mucosa-associated invariant T (MAIT) cells are MR1-restricted, innate-like T lymphocytes with tremendous antibacterial and immunomodulatory functions. Additionally, MAIT cells sense and respond to viral infections in an MR1-independent fashion. However, whether they can be directly targeted in immunization strategies against viral pathogens is unclear. We addressed this question in multiple wild-type and genetically altered but clinically relevant mouse strains using several vaccine platforms against influenza viruses, poxviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), a riboflavin-based MR1 ligand of bacterial origin, can synergize with viral vaccines to expand MAIT cells in multiple tissues, reprogram them towards a pro-inflammatory MAIT1 phenotype, license them to bolster virus-specific CD8+ T cell responses, and potentiate heterosubtypic anti-influenza protection. Repeated 5-OP-RU administration did not render MAIT cells anergic, thus allowing for its inclusion in prime-boost immunization protocols. Mechanistically, tissue MAIT cell accumulation was due to their robust proliferation, as opposed to altered migratory behavior, and required viral vaccine replication competency and Toll-like receptor 3 and type I interferon receptor signaling. The observed phenomenon was reproducible in female and male mice, and in both young and old animals. It could also be recapitulated in a human cell culture system in which peripheral blood mononuclear cells were exposed to replicating virions and 5-OP-RU. In conclusion, although viruses and virus-based vaccines are devoid of the riboflavin biosynthesis machinery that supplies MR1 ligands, targeting MR1 enhances the efficacy of vaccine-elicited antiviral immunity. We propose 5-OP-RU as a non-classic but potent and versatile vaccine adjuvant against respiratory viruses.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Vacinas , Feminino , Masculino , Humanos , Camundongos , Animais , Eficácia de Vacinas , Leucócitos Mononucleares , COVID-19/metabolismo , SARS-CoV-2 , Riboflavina/metabolismo , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor
2.
Eur J Immunol ; 52(9): 1482-1497, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746855

RESUMO

Regulatory T-cell (Treg) therapy is under clinical investigation for the treatment of transplant rejection, autoimmune disease, and graft-versus-host disease. With the advent of genome editing, attention has turned to reinforcing Treg function for therapeutic benefit. A hallmark of Tregs is dampened activation of PI3K-AKT signaling, of which PTEN is a major negative regulator. Loss-of-function studies of PTEN, however, have not conclusively shown a requirement for PTEN in upholding Treg function and stability. Using CRISPR-based genome editing in human Tregs, we show that PTEN ablation does not cause a global defect in Treg function and stability; rather, it selectively blocks their ability to suppress antigen-presenting cells. PTEN-KO Tregs exhibit elevated glycolytic activity, upregulate FOXP3, maintain a Treg phenotype, and have no discernible defects in lineage stability. Functionally, PTEN is dispensable for human Treg-mediated inhibition of T-cell activity in vitro and in vivo but is required for suppression of costimulatory molecule expression by antigen-presenting cells. These data are the first to define a role for a signaling pathway in controlling a subset of human Treg activity. Moreover, they point to the functional necessity of PTEN-regulated PI3K-AKT activity for optimal human Treg function.


Assuntos
Doenças Autoimunes , PTEN Fosfo-Hidrolase , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/metabolismo , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Immunol Cell Biol ; 101(3): 249-261, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36604951

RESUMO

Sepsis-elicited immunosuppression elevates the risk of secondary infections. We used a clinically relevant mouse model and serial peripheral blood samples from patients to assess the antimicrobial activities of mucosa-associated invariant T (MAIT) cells in sepsis. Hepatic and splenic MAIT cells from B6-MAITCAST mice displayed increased CD69 expression and a robust interferon-γ (IFNγ) production capacity shortly after sublethal cecal ligation and puncture, but not at a late timepoint. Peripheral blood MAIT cell frequencies were reduced in septic patients at the time of intensive care unit (ICU) admission, and more dramatically so among nonsurvivors, suggesting the predictive usefulness of early MAIT cell enumeration. In addition, at ICU admission, MAIT cells from sepsis survivors launched stronger IFNγ responses to several bacterial species compared with those from patients who subsequently died of sepsis. Of note, while low human leukocyte antigen (HLA)-DR+ monocyte frequencies, widely regarded as a surrogate indicator of sepsis-induced immunosuppression, were gradually corrected, the numerical insufficiency of MAIT cells was not resolved over time, and their CD69 expression continued to decline. MAIT cell responses to bacterial pathogens, a major histocompatibility complex-related protein 1 (MR1) ligand, and interleukin (IL)-12 and IL-18 were also progressively lost during sepsis and did not recover by the time of ICU/hospital discharge. We propose that MAIT cell dysfunctions contribute to post-sepsis immunosuppression.


Assuntos
Anti-Infecciosos , Células T Invariantes Associadas à Mucosa , Sepse , Humanos , Camundongos , Animais , Prognóstico , Interleucina-12/metabolismo , Antígenos HLA-DR/metabolismo , Sepse/metabolismo , Anti-Infecciosos/metabolismo
4.
Eur J Immunol ; 51(1): 27-38, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301176

RESUMO

Regulatory T cells (Tregs) have a critical role in maintaining self-tolerance and immune homeostasis. There is much interest in using Tregs as a cell therapy to re-establish tolerance in conditions such as inflammatory bowel disease and type 1 diabetes, with many ongoing clinical studies testing the safety and efficacy of this approach. Manufacturing of Tregs for therapy typically involves ex vivo expansion to obtain sufficient cell numbers for infusion and comes with the risk of altering the activity of key biological processes. However, this process also offers an opportunity to tailor Treg function to maximize in vivo activity. In this review, we focus on the roles of antigen-presenting cells (APCs) in the generation and function of Tregs in humans. In addition to stimulating the development of Tregs, APCs activate Tregs and provide signals that induce specialized functional and homing marker expression. Cross talk between Tregs and APCs is a critical, often under-appreciated, aspect of Treg biology, with APCs mediating the key properties of infectious tolerance and bystander suppression. Understanding the biology of human Treg-APC interactions will reveal new ways to optimize Treg-based therapeutic approaches.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T Reguladores/imunologia , Diferenciação Celular , Humanos , Tolerância Imunológica , Sinapses Imunológicas , Imunoterapia Adotiva , Ativação Linfocitária , Modelos Imunológicos , Receptor Cross-Talk/imunologia , Receptores de Retorno de Linfócitos/imunologia , Tolerância a Antígenos Próprios , Biologia Sintética , Linfócitos T Reguladores/citologia , Timo/citologia , Timo/imunologia
5.
J Infect Dis ; 219(8): 1307-1317, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30418594

RESUMO

Superantigens (SAgs) released by common Gram-positive bacterial pathogens have been reported to delete, anergize, or activate mouse T cells. However, little is known about their effects on preexisting memory CD8+ T cell (TCD8) pools. Furthermore, whether SAgs manipulate human memory TCD8 responses to cognate antigens is unknown. We used a human peripheral blood mononuclear cell culture system and a nontransgenic mouse model in which the impact of stimulation by two fundamentally distinct SAgs, staphylococcal enterotoxin B and Mycoplasma arthritidis mitogen, on influenza virus- and/or cytomegalovirus-specific memory TCD8 could be monitored. Bacterial SAgs surprisingly expanded antiviral memory TCD8 generated naturally through infection or artificially through vaccination. Mechanistically, this was a T cell-intrinsic and T cell receptor ß-chain variable-dependent phenomenon. Importantly, SAg-expanded TCD8 displayed an effector memory phenotype and were capable of producing interferon-γ and destroying target cells ex vivo or in vivo. These findings have clear implications for antimicrobial defense and rational vaccine design.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Superantígenos/imunologia , Adulto , Animais , Antígenos de Bactérias/imunologia , Enterotoxinas/imunologia , Feminino , Humanos , Memória Imunológica/imunologia , Vacinas contra Influenza/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae/imunologia , Adulto Jovem
6.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645184

RESUMO

Regulatory T cells (Tregs) have potential as a cell-based therapy to prevent or treat transplant rejection and autoimmunity. Using an HLA-A2-specific chimeric antigen receptor (A2-CAR), we previously showed that adoptive transfer of A2-CAR Tregs limited anti-HLA-A2 alloimmunity. However, it was unknown if A2-CAR Tregs could also limit immunity to autoantigens. Using a model of HLA-A2+ islet transplantation into immunodeficient non-obese diabetic mice, we investigated if A2-CAR Tregs could control diabetes induced by islet-autoreactive (BDC2.5) T cells. In mice transplanted with HLA-A2+ islets, A2-CAR Tregs reduced BDC2.5 T cell engraftment, proliferation and cytokine production, and protected mice from diabetes. Tolerance to islets was systemic, including protection of the HLA-A2negative endogenous pancreas. In tolerant mice, a significant proportion of BDC2.5 T cells gained FOXP3 expression suggesting that long-term tolerance is maintained by de novo Treg generation. Thus, A2-CAR Tregs mediate linked suppression and infectious tolerance and have potential therapeutic use to simultaneously control both allo- and autoimmunity in islet transplantation.

7.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865264

RESUMO

Adoptive immunotherapy with Tregs is a promising approach for prevention or treatment of type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B-chain 10-23 peptide presented in the context of the IA g7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR re-directed NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Co-transfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In wild type NOD mice, InsB-g7 CAR Tregs stably expressed Foxp3 and prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising new therapeutic approach for the prevention of autoimmune diabetes. Brief Summary: Chimeric antigen receptor Tregs specific for an insulin B-chain peptide presented by MHC class II prevent autoimmune diabetes.

8.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37561596

RESUMO

Adoptive immunotherapy with Tregs is a promising approach for preventing or treating type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B chain 10-23 peptide presented in the context of the IAg7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR redirected NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Cotransfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In WT NOD mice, InsB-g7 CAR Tregs prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising therapeutic approach for the prevention of autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Receptores de Antígenos Quiméricos , Camundongos , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos Endogâmicos NOD , Insulina/metabolismo , Linfócitos T Reguladores
9.
Nat Biomed Eng ; 5(10): 1202-1216, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34373602

RESUMO

Systemic immunosuppression for the mitigation of immune rejection after organ transplantation causes adverse side effects and constrains the long-term benefits of the transplanted graft. Here we show that protecting the endothelial glycocalyx in vascular allografts via the enzymatic ligation of immunosuppressive glycopolymers under cold-storage conditions attenuates the acute and chronic rejection of the grafts after transplantation in the absence of systemic immunosuppression. In syngeneic and allogeneic mice that received kidney transplants, the steric and immunosuppressive properties of the ligated polymers largely protected the transplanted grafts from ischaemic reperfusion injury, and from immune-cell adhesion and thereby immunocytotoxicity. Polymer-mediated shielding of the endothelial glycocalyx following organ procurement should be compatible with clinical procedures for transplant preservation and perfusion, and may reduce the damage and rejection of transplanted organs after surgery.


Assuntos
Glicocálix , Rejeição de Enxerto , Aloenxertos , Animais , Rejeição de Enxerto/prevenção & controle , Imunossupressores , Camundongos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA