Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 327(1): H221-H241, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819382

RESUMO

Research using animals depends on the generation of offspring for use in experiments or for the maintenance of animal colonies. Although not considered by all, several different factors preceding and during pregnancy, as well as during lactation, can program various characteristics in the offspring. Here, we present the most common models of developmental programming of cardiovascular outcomes, important considerations for study design, and provide guidelines for producing and reporting rigorous and reproducible cardiovascular studies in offspring exposed to normal conditions or developmental insult. These guidelines provide considerations for the selection of the appropriate animal model and factors that should be reported to increase rigor and reproducibility while ensuring transparent reporting of methods and results.


Assuntos
Doenças Cardiovasculares , Modelos Animais de Doenças , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Humanos , Projetos de Pesquisa , Fatores de Risco de Doenças Cardíacas , Medição de Risco , Reprodutibilidade dos Testes , Desenvolvimento Fetal
2.
Am J Physiol Heart Circ Physiol ; 327(1): H191-H220, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758127

RESUMO

Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Período Pós-Parto , Gravidez , Humanos , Feminino , Animais , Complicações Cardiovasculares na Gravidez/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/diagnóstico
3.
J Neurosci Res ; 101(12): 1884-1899, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37772463

RESUMO

Eclampsia, new-onset seizures in pregnancy, can complicate preeclampsia, a hypertensive pregnancy disorder. The mechanisms contributing to increased risk of seizures in preeclampsia are not fully known. One mechanism could be abnormal endocannabinoid system (ECS) activity and impaired neuromodulation. Indeed, increased placental cannabinoid receptor 1 (CB1R) expression and reduced serum anandamide, a CB1R ligand, have been reported in preeclampsia patients. We hypothesized that reduced uterine perfusion pressure (RUPP), used to mimic preeclampsia, leads to changes in hippocampal CB1R expression, and that manipulating CB1R activity will change seizure severity in RUPP mice. Pregnant mice underwent sham or RUPP surgery on gestational day (GD)13.5. On GD18.5, mice received: no drug treatment, pentylenetetrazol (PTZ, 40 mg/kg), Rimonabant (10 mg/kg) + PTZ, or 2-AG (1 mg/kg) + PTZ. Behaviors were video recorded (15 min for Rimonabant and 2-AG, followed by 30 min for PTZ), and the hippocampus was harvested. The expression of CB1R and ECS proteins was measured in hippocampal homogenates, synaptosomes, and cytosol. Hippocampal CB1R increased in homogenates and cytosolic fraction, and was unchanged in synaptosomes of RUPP mice. Increased CB1R colocalization on glutamate-releasing neurons within hippocampal CA1 was observed in RUPP mice. Rimonabant modestly increased seizure scores over time in RUPP mice. PTZ after rimonabant pretreatment increased seizure scores and duration, while reducing latency in sham mice, with little to no change in RUPP mice. Furthermore, RUPP mice had lower seizure scores over time than sham following CB1R blockade and activation. These data suggest that RUPP modifies CB1R activity prior to seizure induction, which protects mice from worse seizure outcomes.


Assuntos
Canabinoides , Hipertensão , Pré-Eclâmpsia , Humanos , Ratos , Camundongos , Gravidez , Animais , Feminino , Placenta , Ratos Sprague-Dawley , Rimonabanto/farmacologia , Receptores de Canabinoides , Modelos Animais de Doenças , Convulsões/induzido quimicamente , Pressão Sanguínea/fisiologia , Perfusão , Isquemia
4.
Curr Hypertens Rep ; 25(12): 463-470, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996623

RESUMO

PURPOSE OF REVIEW: The incidence of hypertensive disorders of pregnancy (HDP), especially preeclampsia has increased significantly over the last two decades. Patients with these disorders often report cerebral and visual symptoms, which are listed as potential diagnosis criteria for preeclampsia, if accompanied by new-onset hypertension. Recent studies indicate that cerebral complications in HDP patients are associated with a compromised blood-brain barrier (BBB). The purpose of this review is to highlight the recent literature focused on the BBB in HDP, identify gaps in knowledge, and discuss future directions in this research area. RECENT FINDINGS: Majority of the studies addressing BBB changes in HDP are focused on preeclampsia. Recent studies show that hypertension induces increased association of perivascular macrophages/microglia to the cerebral vessels, increased circulating extracellular vesicles, and decreased autoregulation of cerebral blood flow. There is a critical need for more animal studies targeted to protecting the BBB and preventing cerebrovascular complications in the context of HDP. More clinical studies are needed that investigate both the short- and long-term interplay between each HDP subtype and BBB and cognitive function.


Assuntos
Sistema Cardiovascular , Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Gravidez , Feminino , Animais , Humanos , Barreira Hematoencefálica , Circulação Cerebrovascular
5.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835376

RESUMO

Structural changes in the retinal vasculature have been linked to increased cardiovascular risks and also change as a function of age. Because multiparity has been associated with poorer cardiovascular health scores, we hypothesized that changes in retinal vascular caliber would be observed in multiparous, compared to nulliparous, females and retired breeder males. Age-matched nulliparous (n = 6) and multiparous (n = 11, retired breeder females with 4 ± 1 litters), and male breeder (n = 7) SMA-GFP reporter mice were included for assessment of retinal vascular structure. Multiparous females had higher body mass, heart weight, and kidney weight compared to nulliparous mice, with lower kidney and higher brain weight compared to male breeders. There was no difference in number of retinal arterioles or venules, or arteriole or venule diameter among groups; however, venous pericyte density (number per venule area) decreased in multiparous vs. nulliparous mice and was negatively associated with the time since last litter and with age. Our results suggest that the time elapsed since delivery is an important factor to be considered in multiparity studies. Taken together, changes in vascular structure and potentially function, are time- and age-dependent. Ongoing and future work will determine whether structural changes are associated with functional consequences at the blood-retinal barrier.


Assuntos
Pericitos , Retina , Gravidez , Feminino , Masculino , Animais , Camundongos , Paridade , Vênulas , Rim , Arteríolas
6.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328808

RESUMO

As the resident immune cells of the central nervous system, microglia have a wide range of functions such as surveillance, phagocytosis, and signaling through production of chemokines and cytokines. Recent studies have identified and characterized macrophages residing at the meninges, a series of layers surrounding the brain and spinal cord. While perivascular microglia within the brain parenchyma increase following chronic hypertension, there are no reports of changes at the meninges, and specifically, associated with the pial vasculature. Thus, we used female Sprague Dawley and Dahl salt-sensitive (SS/Jr) rat brains, stained for ionized calcium-binding adapter molecule (Iba1), and characterized microglia/macrophages associated with pial vessels in the posterior brain. Results indicate that Iba1+ pial vessel-associated microglia (PVAM) completely surrounded the vessels in brains from the Dahl-SS/Jr rats. PVAM density was significantly higher and distance between PVAMs lower in Dahl-SS/Jr compared to the Sprague Dawley rat brains. Pregnancy history did not affect these findings. While the functional role of these cells are not known, we contextualize our novel findings with that of other studies assessing or characterizing myeloid cells at the borders of the CNS (meninges and choroid plexus) and perivascular macrophages and propose their possible origin in the Dahl-SS/Jr model of chronic hypertension.


Assuntos
Hipertensão , Microglia , Animais , Pressão Sanguínea/fisiologia , Feminino , Macrófagos , Gravidez , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , História Reprodutiva
7.
Am J Physiol Heart Circ Physiol ; 320(2): H535-H548, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275518

RESUMO

Preeclampsia is characterized by increases in blood pressure and proteinuria in late pregnancy, and neurological symptoms can appear in the form of headaches, blurred vision, cerebral edema, and, in the most severe cases, seizures (eclampsia). The causes for these cerebral manifestations remain unknown, so the use of animal models that mimic preeclampsia is essential to understanding its pathogenesis. The Dahl salt-sensitive (Dahl SS/jr) rat model develops spontaneous preeclampsia superimposed on chronic hypertension; therefore, we hypothesized that the Dahl SS/jr rat would display cerebrovascular features similar to those seen in human preeclampsia. Furthermore, we predicted that this model would allow for the identification of mechanisms underlying these changes. The pregnant Dahl SS/jr rat displayed increased cerebral edema and blood-brain barrier disruption despite tighter control of cerebral blood flow autoregulation and vascular smooth muscle myogenic tone. Analysis of cerebral endothelial cell morphology revealed increased opening of tight junctions, basement membrane dissolution, and vesicle formation. RNAseq analysis identified that genes related to endothelial cell tight junctions and blood-brain barrier integrity were differentially expressed in cerebral vessels from pregnant Dahl SS/jr compared with healthy pregnant Sprague Dawley rats. Overall, our data reveal new insights into mechanisms involved in the cerebrovascular dysfunction of preeclampsia.NEW & NOTEWORTHY This study uses the Dahl SS/jr rat as a preclinical model of spontaneous superimposed preeclampsia to demonstrate uncoupling of cerebral vascular permeability and blood-brain barrier disruption from cerebral blood flow autoregulatory dysfunction and myogenic tone. Additionally, the data presented in this study lay the foundational framework on which future experiments assessing specific transcellular transport components such as individual transporter protein expression and components of the vesicular transport system (caveolae) can be built to help reveal a potential direct mechanistic insight into the causes of cerebrovascular complications during preeclamptic pregnancies.


Assuntos
Barreira Hematoencefálica/metabolismo , Edema Encefálico/patologia , Permeabilidade Capilar , Células Endoteliais/ultraestrutura , Pré-Eclâmpsia/patologia , Animais , Membrana Basal/ultraestrutura , Barreira Hematoencefálica/ultraestrutura , Edema Encefálico/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/ultraestrutura , Feminino , Pré-Eclâmpsia/metabolismo , Gravidez , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Junções Íntimas/ultraestrutura
8.
Int J Mol Sci ; 20(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434191

RESUMO

Offspring of preeclampsia patients have an increased risk of developing neurological deficits and cognitive impairment. While low placental perfusion, common in preeclampsia and growth restriction, has been linked to neurological deficits, a causative link is not fully established. The goal of this study was to test the hypothesis that placental ischemia induces neuroinflammation and micro-hemorrhages in utero. Timed-pregnant Sprague Dawley rats were weight-matched for sham surgery (abdominal incision only) or induced placental ischemia (surgical reduction of utero-placental perfusion (RUPP)); n = 5/group on gestational day 14. Fetal brains (n = 1-2/dam/endpoint) were collected at embryonic day (E19). Placental ischemia resulted in fewer live fetuses, increased fetal demise, increased hematocrit, and no difference in brain water content in exposed fetuses. Additionally, increased cerebral micro-bleeds (identified with H&E staining), pro-inflammatory cytokines: IL-1ß, IL-6, and IL-18, eotaxin (CCL11), LIX (CXCL5), and MIP-2 (CXCL2) were observed in RUPP-exposed fetuses. Microglial density in the sub-ventricular zone decreased in RUPP-exposed fetuses, with no change in cortical thickness. Our findings support the hypothesis that exposure to placental ischemia contributes to microvascular dysfunction (increased micro-bleeds), fetal brain inflammation, and reduced microglial density in proliferative brain areas. Future studies will determine whether in utero abnormalities contribute to long-term behavioral deficits in preeclampsia offspring through impaired neurogenesis regulation.


Assuntos
Feto/metabolismo , Isquemia/metabolismo , Placenta/metabolismo , Animais , Pressão Sanguínea/fisiologia , Quimiocina CCL11/metabolismo , Quimiocina CXCL2/metabolismo , Quimiocina CXCL5/metabolismo , Feminino , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Microglia/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley
10.
Brain Behav Immun ; 70: 376-389, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29588233

RESUMO

Reduced placental blood flow results in placental ischemia, an initiating event in the pathophysiology of preeclampsia, a hypertensive pregnancy disorder. While studies show increased mortality risk from Alzheimer's disease, stroke, and cerebrovascular complications in women with a history of preeclampsia, the underlying mechanisms are unknown. During pregnancy, placental ischemia, induced by reducing uterine perfusion pressure (RUPP), leads to cerebral edema and increased blood-brain barrier (BBB) permeability; however whether these complications persist after delivery is not known. Therefore, we tested the hypothesis that placental ischemia contributes to postpartum cerebral edema and neuroinflammation. On gestational day 14, time-pregnant Sprague Dawley rats underwent Sham (n = 10) or RUPP (n = 9) surgery and brain tissue collected 2 months post-delivery. Water content increased in posterior cortex but not hippocampus, striatum, or anterior cerebrum following RUPP. Using a rat cytokine multi-plex kit, posterior cortical IL-17, IL-1α, IL-1ß, Leptin, and MIP2 increased while hippocampal IL-4, IL-12(p70) and RANTES increased and IL-18 decreased following RUPP. Western blot analysis showed no changes in astrocyte marker, Glial Fibrillary Acidic Protein (GFAP); however, the microglia marker, ionized calcium binding adaptor molecule (Iba1) tended to increase in hippocampus of RUPP-exposed rats. Immunofluorescence staining revealed reduced number of posterior cortical microglia but increased activated (Type 4) microglia in RUPP. Astrocyte number increased in both regions but area covered by astrocytes increased only in posterior cortex following RUPP. BBB-associated proteins, Claudin-1, Aquaporin-4, and zonular occludens-1 expression were unaltered; however, posterior cortical occludin decreased. These results suggest that 2 months postpartum, neuroinflammation, along with decreased occludin expression, may partly explain posterior cortical edema in rats with history of placental ischemia.


Assuntos
Edema Encefálico/etiologia , Isquemia/fisiopatologia , Placenta/irrigação sanguínea , Animais , Astrócitos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Edema Encefálico/fisiopatologia , Feminino , Hipertensão/fisiopatologia , Inflamação/fisiopatologia , Microglia , Ocludina/metabolismo , Placenta/metabolismo , Período Pós-Parto , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos , Ratos Sprague-Dawley , Útero/fisiopatologia
11.
Int J Mol Sci ; 18(3)2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28264495

RESUMO

Preeclampsia (PE) is a disorder of pregnancy typically characterized by new onset hypertension after gestational week 20 and proteinuria. Although PE is one of the leading causes of maternal and perinatal morbidity and death worldwide, the mechanisms of the pathogenesis of the disease remain unclear and treatment options are limited. However, there is increasing evidence to suggest that endothelin-1 (ET-1) plays a critical role in the pathophysiology of PE. Multiple studies report that ET-1 is increased in PE and some studies report a positive correlation between ET-1 and the severity of symptoms. A number of experimental models of PE are also associated with elevated tissue levels of prepro ET-1 mRNA. Moreover, experimental models of PE (placental ischemia, sFlt-1 infusion, Tumor necrosis factor (TNF) -α infusion, and Angiotensin II type 1 receptor autoantibody (AT1-AA) infusion) have proven to be susceptible to Endothelin Type A (ETA) receptor antagonism. While the results are promising, further work is needed to determine whether ET antagonists could provide an effective therapy for the management of preeclampsia.


Assuntos
Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina A/uso terapêutico , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Receptor de Endotelina A/metabolismo , Animais , Modelos Animais de Doenças , Endotelinas/genética , Endotelinas/metabolismo , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Feminino , Humanos , Terapia de Alvo Molecular , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/etiologia , Gravidez , Receptor de Endotelina A/genética , Transdução de Sinais
14.
Am J Physiol Regul Integr Comp Physiol ; 309(11): R1425-31, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26400187

RESUMO

Cerebrovascular complications and increased risk of encephalopathies are characteristic of preeclampsia and contribute to 40% of preeclampsia/eclampsia-related deaths. Circulating tumor necrosis factor-α (TNF-α) is elevated in preeclamptic women, and infusion of TNF-α into pregnant rats mimics characteristics of preeclampsia. While this suggests that TNF-α has a mechanistic role to promote preeclampsia, the impact of TNF-α on the cerebral vasculature during pregnancy remains unclear. We tested the hypothesis that TNF-α contributes to cerebrovascular abnormalities during placental ischemia by first infusing TNF-α in pregnant rats (200 ng/day ip, from gestational day 14 to 19) at levels to mimic those reported in preeclamptic women. TNF-α increased mean arterial pressure (MAP, P < 0.05) and brain water content in the anterior cerebrum (P < 0.05); however, TNF-α infusion had no effect on blood-brain barrier (BBB) permeability in the anterior cerebrum or posterior cerebrum. We then assessed the role of endogenous TNF-α in mediating these abnormalities in a model of placental ischemia induced by reducing uterine perfusion pressure followed by treatment with the soluble TNF-α receptor (etanercept, 0.8 mg/kg sc) on gestational day 18. Etanercept reduced placental ischemia-mediated increases in MAP, anterior brain water content (P < 0.05), and BBB permeability (202 ± 44% in placental ischemic rats to 101 ± 28% of normal pregnant rats). Our results indicate that TNF-α mechanistically contributes to cerebral edema by increasing BBB permeability and is an underlying factor in the development of cerebrovascular abnormalities associated with preeclampsia complicated by placental ischemia.


Assuntos
Água Corporal/metabolismo , Edema Encefálico/etiologia , Encéfalo/metabolismo , Permeabilidade Capilar , Transtornos Cerebrovasculares/etiologia , Isquemia/complicações , Placenta/irrigação sanguínea , Pré-Eclâmpsia/etiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Pressão Sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Edema Encefálico/metabolismo , Edema Encefálico/fisiopatologia , Edema Encefálico/prevenção & controle , Permeabilidade Capilar/efeitos dos fármacos , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/fisiopatologia , Transtornos Cerebrovasculares/prevenção & controle , Modelos Animais de Doenças , Etanercepte/administração & dosagem , Feminino , Idade Gestacional , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Isquemia/fisiopatologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Pré-Eclâmpsia/prevenção & controle , Gravidez , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/antagonistas & inibidores
15.
Am J Physiol Heart Circ Physiol ; 307(6): H858-68, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038144

RESUMO

Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT.


Assuntos
Lesões Encefálicas/etiologia , Células Endoteliais/efeitos da radiação , Hipocampo/irrigação sanguínea , Hipocampo/efeitos da radiação , Microvasos/efeitos da radiação , Neovascularização Fisiológica/efeitos da radiação , Lesões por Radiação/etiologia , Células-Tronco/efeitos dos fármacos , Irradiação Corporal Total , Animais , Transplante de Medula Óssea , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Adesão Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Modelos Animais de Doenças , Fracionamento da Dose de Radiação , Células Endoteliais/patologia , Células Endoteliais/transplante , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Hipóxia/fisiopatologia , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/patologia , Microvasos/fisiopatologia , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Lesões por Radiação/fisiopatologia , Nicho de Células-Tronco , Células-Tronco/patologia , Fatores de Tempo
16.
Am J Physiol Regul Integr Comp Physiol ; 307(7): R769-77, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24898840

RESUMO

The heme oxygenase system has long been believed to act largely as a housekeeping unit, converting prooxidant free heme from heme protein degradation into the benign bilirubin for conjugation and safe excretion. In recent decades, however, heme oxygenases have emerged as important regulators of cardiovascular function, largely through the production of their biologically active metabolites: carbon monoxide, bilirubin, and elemental iron. Even more recently, a number of separate lines of evidence have demonstrated an important role for the heme oxygenases in the establishment and maintenance of pregnancy. Early preclinical and clinical studies have associated defects in the heme oxygenase with the obstetrical complication preeclampsia, as well as failure to establish adequate placental blood flow, an underlying mechanism of the disorder. Several recent preclinical studies have suggested, however, that the heme oxygenase system could serve as a valuable therapeutic tool for the management of preeclampsia, which currently has few pharmacological options. This review will summarize the role of heme oxygenases in pregnancy and highlight their potential in advancing the management of patients with preeclampsia.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/enzimologia , Animais , Bilirrubina/metabolismo , Monóxido de Carbono/metabolismo , Feminino , Heme/metabolismo , Heme Oxigenase (Desciclizante)/genética , Humanos , Gravidez
17.
Am J Physiol Regul Integr Comp Physiol ; 307(11): R1353-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25298513

RESUMO

Despite preeclampsia being one of the leading causes of maternal death and a major contributor of maternal and perinatal morbidity, the mechanisms responsible for its pathogenesis have yet to be fully elucidated. Growing evidence indicates that reduced uteroplacental perfusion and the resulting placental ischemia triggers the cascade of events leading to this maternal disorder. While the well-established rat model of reduced uterine perfusion pressure (RUPP) is providing invaluable insight into the etiology of preeclampsia, the aim of this study was to develop a mouse model of reduced uterine perfusion to expand mechanistic investigation by incorporation with novel gene-targeted mice. To accomplish this aim, a sham surgical procedure or a restriction of blood flow at the abdominal aorta and the ovarian arteries was initiated at day 13 of gestation in C57BL/6J mice. Mean arterial pressure measured in conscious, chronically instrumented mice was significantly elevated in the RUPP (120 ± 4 mmHg) compared with the sham (104 ± 4 mmHg) mice at day 18 of gestation (P < 0.01). Placental ischemia reduced fetal weights (0.95 ± 0.04 and 0.80 ± 0.02 g; RUPP vs. Sham, respectively; P < 0.02) and increased circulating levels of antiangiogenic soluble fms-related tyrosine kinases (sFlt)-1 (P < 0.05) in the RUPP at day 18 of gestation. Plasma concentrations of sFlt-1 are increased in preeclamptic patients and in response to reduced uterine perfusion in the rat. Thus, these results suggest that the mouse model of reduced uterine perfusion is applicable to facilitate novel mechanistic investigation into the etiology of hypertension that results from placental ischemia during pregnancy.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão Induzida pela Gravidez/fisiopatologia , Útero/irrigação sanguínea , Animais , Peso ao Nascer/fisiologia , Peso Corporal/fisiologia , Feminino , Camundongos , Tamanho do Órgão/fisiologia , Perfusão , Placenta/patologia , Insuficiência Placentária/fisiopatologia , Gravidez , Proteinúria/metabolismo , Fluxo Sanguíneo Regional/fisiologia
18.
Am J Physiol Regul Integr Comp Physiol ; 306(9): R641-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24553299

RESUMO

Preeclampsia is thought to arise from inadequate cytotrophoblast migration and invasion of the maternal spiral arteries, resulting in placental ischemia and hypertension. Evidence suggests that altered expression of epithelial Na(+) channel (ENaC) proteins may be a contributing mechanism for impaired cytotrophoblast migration. ENaC activity is required for normal cytotrophoblast migration. Moreover, ß-ENaC, the most robustly expressed placental ENaC message, is reduced in placentas from preeclamptic women. We recently demonstrated that heme oxygenase-1 (HO-1) protects against hypertension in a rat model of placental ischemia; however, whether HO-1 regulation of ß-ENaC contributes to the beneficial effects of HO-1 is unknown. The purpose of this study was to determine whether ß-ENaC mediates cytotrophoblast migration and whether HO-1 enhances ENaC-mediated migration. We showed that placental ischemia, induced by reducing uterine perfusion suppressed, and HO-1 induction restored, ß-ENaC expression in ischemic placentas. Using an in vitro model, we found that HO-1 induction, using cobalt protoporphyrin, stimulates cytotrophoblast ß-ENaC expression by 1.5- and 1.8-fold (10 and 50 µM). We then showed that silencing of ß-ENaC in cultured cytotrophoblasts (BeWo cells), by expression of dominant-negative constructs, reduced migration to 56 ± 13% (P < 0.05) of control. Importantly, HO-1 induction enhanced migration (43 ± 5% of control, P < 0.05), but the enhanced migratory response was entirely blocked by ENaC inhibition with amiloride (10 µM). Taken together, our results suggest that ß-ENaC mediates cytotrophoblast migration and increasing ß-ENaC expression by HO-1 induction enhances migration. HO-1 regulation of cytotrophoblast ß-ENaC expression and migration may be a potential therapeutic target in preeclamptic patients.


Assuntos
Movimento Celular , Canais Epiteliais de Sódio/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Isquemia/enzimologia , Placenta/irrigação sanguínea , Placenta/enzimologia , Trofoblastos/enzimologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Indução Enzimática , Canais Epiteliais de Sódio/genética , Feminino , Heme Oxigenase (Desciclizante)/biossíntese , Heme Oxigenase-1/biossíntese , Humanos , Isquemia/fisiopatologia , Circulação Placentária , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transfecção
19.
Exp Neurol ; 379: 114888, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009176

RESUMO

Traumatic brain injury (TBI) is one of the most common causes of emergency room visits in children, and it is a leading cause of death in juveniles in the United States. Similarly, a high proportion of this population consumes diets that are high in saturated fats, and millions of children are overweight or obese. The goal of the present study was to assess the relationship between diet and TBI on cognitive and cerebrovascular outcomes in juvenile rats. In the current study, groups of juvenile male Long Evans rats were subjected to either mild TBI via the Closed-Head Injury Model of Engineered Rotational Acceleration (CHIMERA) or underwent sham procedures. The animals were provided with either a combination of high-fat diet and a mixture of high-fructose corn syrup (HFD/HFCS) or a standard chow diet (CH) for 9 days prior to injury. Prior to injury, the animals were trained on the Morris water maze for three consecutive days, and they underwent a post-injury trial on the day of the injury. Immediately after TBI, the animals' righting reflexes were tested. Four days post-injury, the animals were euthanized, and brain samples and blood plasma were collected for qRT-PCR, immunohistochemistry, and triglyceride assays. Additional subsets of animals were used to investigate cerebrovascular perfusion using Laser Speckle and perform immunohistochemistry for endothelial cell marker RECA. Following TBI, the righting reflex was significantly increased in TBI rats, irrespective of diet. The TBI worsened the rats' performance in the post-injury trial of the water maze at 3 h, p(injury) < 0.05, but not at 4 days post-injury. Reduced cerebrovascular blood flow using Laser Speckle was demonstrated in the cerebellum, p(injury) < 0.05, but not foci of the cerebral cortices or superior sagittal sinus. Immunoreactive staining for RECA in the cortex and corpus callosum was significantly reduced in HFD/HFCS TBI rats, p < 0.05. qRT-PCR showed significant increases in APOE, CREB1, FCGR2B, IL1B, and IL6, particularly in the hippocampus. The results from this study offer robust evidence that HFD/HFCS negatively influences TBI outcomes with respect to cognition and cerebrovascular perfusion of relevant brain regions in the juvenile rat.

20.
J Vasc Res ; 50(6): 445-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24107797

RESUMO

Mild cognitive impairment is a well-documented consequence of whole brain radiation therapy (WBRT) that affects 40-50% of long-term brain tumor survivors. The exact mechanisms for the decline in cognitive function after WBRT remain elusive and no treatment or preventative measures are available for use in the clinic. Here, we review recent findings indicating how changes in the neurovascular unit may contribute to the impairments in learning and memory. In addition to affecting neuronal development, WBRT induces profound capillary rarefaction within the hippocampus - a region of the brain important for learning and memory. Therapeutic strategies such as hypoxia, which restore the capillary density, result in the rescue of cognitive function. In addition to decreasing vascular density, WBRT impairs vasculogenesis and/or angiogenesis, which may also contribute to radiation-induced cognitive decline. Further studies aimed at uncovering the specific mechanisms underlying these WBRT-induced changes in the cerebrovasculature are essential for developing therapies to mitigate the deleterious effects of WBRT on cognitive function.


Assuntos
Encéfalo/efeitos da radiação , Transtornos Cerebrovasculares/etiologia , Cognição/efeitos da radiação , Disfunção Cognitiva/etiologia , Irradiação Craniana/efeitos adversos , Lesões por Radiação/etiologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Artérias Cerebrais/patologia , Artérias Cerebrais/efeitos da radiação , Transtornos Cerebrovasculares/diagnóstico , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/psicologia , Transtornos Cerebrovasculares/terapia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/terapia , Humanos , Aprendizagem/efeitos da radiação , Memória/efeitos da radiação , Microvasos/patologia , Microvasos/efeitos da radiação , Neovascularização Fisiológica/efeitos da radiação , Neurônios/patologia , Neurônios/efeitos da radiação , Lesões por Radiação/diagnóstico , Lesões por Radiação/patologia , Lesões por Radiação/psicologia , Lesões por Radiação/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA