Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(9): 1575-1588, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36637428

RESUMO

Folic acid (synthetic folate, FA) is consumed in excess in North America and may interact with common pathogenic variants in methylenetetrahydrofolate reductase (MTHFR); the most prevalent inborn error of folate metabolism with wide-ranging obesity-related comorbidities. While preclinical murine models have been valuable to inform on diet-gene interactions, a recent Folate Expert panel has encouraged validation of new animal models. In this study, we characterized a novel zebrafish model of mthfr deficiency and evaluated the effects of genetic loss of mthfr function and FA supplementation during embryonic development on energy homeostasis and metabolism. mthfr-deficient zebrafish were generated using CRISPR mutagenesis and supplemented with no FA (control, 0FA) or 100 µm FA (100FA) throughout embryonic development (0-5 days postfertilization). We show that the genetic loss of mthfr function in zebrafish recapitulates key biochemical hallmarks reported in MTHFR deficiency in humans and leads to greater lipid accumulation and aberrant cholesterol metabolism as reported in the Mthfr murine model. In mthfr-deficient zebrafish, energy homeostasis was also impaired as indicated by altered food intake, reduced metabolic rate and lower expression of central energy-regulatory genes. Microglia abundance, involved in healthy neuronal development, was also reduced. FA supplementation to control zebrafish mimicked many of the adverse effects of mthfr deficiency, some of which were also exacerbated in mthfr-deficient zebrafish. Together, these findings support the translatability of the mthfr-deficient zebrafish as a preclinical model in folate research.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , Peixe-Zebra , Humanos , Gravidez , Feminino , Camundongos , Animais , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ácido Fólico , Suplementos Nutricionais , Homeostase , Desenvolvimento Embrionário/genética
2.
Nutr Neurosci ; 27(4): 300-309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36932327

RESUMO

Nutrition is a modifiable risk factor for ischemic stroke. As people age their ability to absorb some nutrients decreases, a primary example is vitamin B12. Older individuals with a vitamin B12 deficiency are at a higher risk for ischemic stroke and have worse stroke outcome. However, the mechanisms through which these occur remain unknown. The aim of the study was to investigate the role of vitamin B12 deficiency in ischemic stroke outcome and mechanistic changes in a mouse model. Ten-month-old male and female mice were put on control or vitamin B12 deficient diets for 4 weeks prior to and after ischemic stroke to the sensorimotor cortex. Motor function was measured, and tissues were collected to assess potential mechanisms. All deficient mice had increased levels of total homocysteine in plasma and liver tissues. After ischemic stroke, deficient mice had impaired motor function compared to control mice. There was no difference between groups in ischemic damage volume. However, within the ischemic damage region, there was an increase in total apoptosis of male deficient mice compared to controls. Furthermore, there was an increase in neuronal survival in ischemic brain tissue of the vitamin B12 deficient mice compared to controls. Additionally, there were changes in choline metabolites in ischemic brain tissue because of a vitamin B12 deficiency. The data presented in this study confirms that a vitamin B12 deficiency worsens stroke outcome in male and female mice. The mechanisms driving this change may be a result of neuronal survival and compensation in choline metabolism within the damaged brain tissue.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Deficiência de Vitamina B 12 , Humanos , Pessoa de Meia-Idade , Masculino , Animais , Feminino , Camundongos , Lactente , Ácido Fólico , Dieta , Deficiência de Vitamina B 12/complicações , Deficiência de Vitamina B 12/metabolismo , Acidente Vascular Cerebral/complicações , Vitamina B 12 , Colina , Homocisteína
3.
FASEB J ; 35(6): e21629, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949005

RESUMO

Cystathionine beta-synthase (CBS) is a key enzyme of the trans-sulfuration pathway that converts homocysteine to cystathionine. Loss of CBS activity due to mutation results in CBS deficiency, an inborn error of metabolism characterized by extreme elevation of plasma total homocysteine (tHcy). C57BL6 mice containing either a homozygous null mutation in the cystathionine ß-synthase (Cbs-/- ) gene or an inactive human CBS protein (Tg-G307S Cbs-/- ) are born in mendelian numbers, but the vast majority die between 18 and 21 days of age due to liver failure. However, adult Cbs null mice that express a hypomorphic allele of human CBS as a transgene (Tg-I278T Cbs-/- ) show almost no neonatal lethality despite having serum tHcy levels similar to mice with no CBS activity. Here, we characterize liver and serum metabolites in neonatal Cbs+/- , Tg-G307S Cbs-/- , and Tg-I278T Cbs-/- mice at 6, 10, and 17 days of age to understand this difference. In serum, we observe similar elevations in tHcy in both Tg-G307S Cbs-/- and Tg-I278T Cbs-/- compared to control animals, but methionine is much more severely elevated in Tg-G307S Cbs-/- mice. Large scale metabolomic analysis of liver tissue confirms that both methionine and methionine-sulfoxide are significantly more elevated in Tg-G307S Cbs-/- animals, along with significant differences in several other metabolites including hexoses, amino acids, other amines, lipids, and carboxylic acids. Our data are consistent with a model that the neonatal lethality observed in CBS-null mice is driven by excess methionine resulting in increased stress on a variety of related pathways including the urea cycle, TCA cycle, gluconeogenesis, and phosphatidylcholine biosynthesis.


Assuntos
Cistationina beta-Sintase/fisiologia , Modelos Animais de Doenças , Falência Hepática/patologia , Metaboloma , Mutação , Animais , Animais Recém-Nascidos , Feminino , Falência Hepática/etiologia , Falência Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
4.
J Cardiothorac Vasc Anesth ; 36(8 Pt A): 2303-2312, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34774406

RESUMO

OBJECTIVES: Acute kidney injury (AKI) remains a leading source of morbidity and mortality after cardiothoracic surgery. Insulin-like growth factor-binding protein 7 (IGFBP7), and tissue inhibitor of metalloproteinases-2 (TIMP-2), are novel early-phase renal biomarkers that have been validated as sensitive predictors of AKI. Here the authors studied the efficacy of these biomarkers for predicting AKI after left ventricular assist device (LVAD) implantation and cardiac transplantation. DESIGN/SETTING/PARTICIPANTS/INTERVENTIONS: This was a prospective study of 73 patients undergoing LVAD implantation (n = 37) or heart transplant (n = 36) from 2016 to 2017 at the authors' center. TIMP-2 and IGFBP7 were measured with the NephroCheck Test on urine samples before surgery and one-to-six hours after surgery. NephroCheck scores were assessed as predictors of moderate/severe AKI (Kidney Disease International Global Outcomes 2/3 creatinine criteria) within 48 hours of surgery, and the association with survival to one year was investigated. MEASUREMENTS AND MAIN RESULTS: The LVAD and transplant cohorts overall were similar in demographics and baseline creatinine (p > 0.05), with the exception of having more African-American patients in the LVAD arm (p = 0.003). Eleven (30%) LVAD and 16 (44%) transplant patients developed moderate/severe AKI. Overall, AKI was associated with postsurgery NephroCheck (odds ratio [95% confidence interval] for 0.1 mg/dL increase: 1.36 [1.04-1.79]; p = 0.03), but not with baseline NephroCheck (p = 0.92). When analyzed by cohort, this effect remained for LVAD (1.68 [1.05-2.71]; p = 0.03) but not for transplant (p = 0.15). Receiver operating characteristic analysis showed postoperative NephroCheck to be superior to baseline creatinine in LVAD (p = 0.046). Furthermore, an increase of 0.1 mg/dL in postoperative NephroCheck was associated with a 10% increase in the risk of mortality (adjusted hazard ratio: 1.11 [1.01-1.21]; p = 0.04) independent of age and body mass index. CONCLUSION: Assessment of TIMP-2 and IGFBP7 within six hours after surgery appeared effective at predicting AKI in patients with LVADs. Larger studies are warranted to validate these findings.


Assuntos
Injúria Renal Aguda , Transplante de Coração , Coração Auxiliar , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Biomarcadores/urina , Pontos de Checagem do Ciclo Celular , Creatinina , Transplante de Coração/efeitos adversos , Coração Auxiliar/efeitos adversos , Humanos , Estudos Prospectivos , Inibidor Tecidual de Metaloproteinase-2/urina
5.
J Nutr ; 151(4): 857-865, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33561219

RESUMO

BACKGROUND: North American women consume high folic acid (FA), but most are not meeting the adequate intakes for choline. High-FA gestational diets induce an obesogenic phenotype in rat offspring. It is unclear if imbalances between FA and other methyl-nutrients (i.e., choline) account for these effects. OBJECTIVE: This study investigated the interaction of choline and FA in gestational diets on food intake, body weight, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring. METHODS: Pregnant Wistar rats were fed an AIN-93G diet with recommended choline and FA [RCRF; 1-fold, control] or high (5-fold) FA with choline at 0.5-fold [low choline and high folic acid (LCHF)], 1-fold [recommended choline and high folic acid (RCHF)], or 2.5-fold [high choline and high folic acid (HCHF)]. Male offspring were weaned to an RCRF diet for 20 wk. Food intake, weight gain, plasma energy-regulatory hormones, brain and plasma one-carbon metabolites, and RNA sequencing (RNA-seq) in pup hypothalamuses were assessed. RESULTS: Adult offspring from LCHF and RCHF, but not HCHF, gestational diets had 10% higher food intake and weight gain than controls (P < 0.01). HCHF newborn pups had lower plasma insulin and leptin compared with LCHF and RCHF pups (P < 0.05), respectively. Pup brain choline (P < 0.05) and betaine (P < 0.01) were 22-33% higher in HCHF pups compared with LCHF pups; methionine was ∼23% lower after all high FA diets compared with RCRF (P < 0.01). LCHF adult offspring had lower brain choline (P < 0.05) than all groups and lower plasma 5-methyltetrahydrofolate (P < 0.05) than RCRF and RCHF groups. HCHF adult offspring had lower plasma cystathionine (P < 0.05) than LCHF adult offspring and lower homocysteine (P < 0.01) than RCHF and RCRF adult offspring. RNA-seq identified 144 differentially expressed genes in the hypothalamus of HCHF newborns compared with controls. CONCLUSIONS: Increased choline in gestational diets modified the programming effects of high FA on long-term food intake regulation, plasma energy-regulatory hormones, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring, emphasizing a need for more attention to the choline and FA balance in maternal diets.


Assuntos
Regulação do Apetite/fisiologia , Colina/administração & dosagem , Ácido Fólico/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Peso Corporal/fisiologia , Encéfalo/metabolismo , Colina/sangue , Ingestão de Alimentos/fisiologia , Feminino , Ácido Fólico/sangue , Expressão Gênica , Hipotálamo/metabolismo , Insulina/sangue , Gordura Intra-Abdominal/anatomia & histologia , Leptina/sangue , Masculino , Troca Materno-Fetal/fisiologia , Modelos Animais , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Desmame
6.
Hum Mol Genet ; 27(12): 2113-2124, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29635516

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant neurodevelopmental disorder and the quintessential disorder of mechanistic Target of Rapamycin Complex 1 (mTORC1) dysregulation. Loss of either causative gene, TSC1 or TSC2, leads to constitutive mTORC1 kinase activation and a pathologically anabolic state of macromolecular biosynthesis. Little is known about the organ-specific metabolic reprogramming that occurs in TSC-affected organs. Using a mouse model of TSC in which Tsc2 is disrupted in radial glial precursors and their neuronal and glial descendants, we performed an unbiased metabolomic analysis of hippocampi to identify Tsc2-dependent metabolic changes. Significant metabolic reprogramming was found in well-established pathways associated with mTORC1 activation, including redox homeostasis, glutamine/tricarboxylic acid cycle, pentose and nucleotide metabolism. Changes in two novel pathways were identified: transmethylation and polyamine metabolism. Changes in transmethylation included reduced methionine, cystathionine, S-adenosylmethionine (SAM-the major methyl donor), reduced SAM/S-adenosylhomocysteine ratio (cellular methylation potential), and elevated betaine, an alternative methyl donor. These changes were associated with alterations in SAM-dependent methylation pathways and expression of the enzymes methionine adenosyltransferase 2A and cystathionine beta synthase. We also found increased levels of the polyamine putrescine due to increased activity of ornithine decarboxylase, the rate-determining enzyme in polyamine synthesis. Treatment of Tsc2+/- mice with the ornithine decarboxylase inhibitor α-difluoromethylornithine, to reduce putrescine synthesis dose-dependently reduced hippocampal astrogliosis. These data establish roles for SAM-dependent methylation reactions and polyamine metabolism in TSC neuropathology. Importantly, both pathways are amenable to nutritional or pharmacologic therapy.


Assuntos
Encéfalo/metabolismo , Metabolômica , Esclerose Tuberosa/metabolismo , Animais , Encéfalo/patologia , Cistationina/genética , Cistationina beta-Sintase/genética , Metilação de DNA/genética , Modelos Animais de Doenças , Eflornitina/administração & dosagem , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Metionina Adenosiltransferase/genética , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Poliaminas/metabolismo , Putrescina/biossíntese , S-Adenosilmetionina/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética
7.
FASEB J ; 33(8): 9334-9349, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31120771

RESUMO

Methyl-donor deficiency is a risk factor for neurodegenerative diseases. Dietary deficiency of the methyl-donors methionine and choline [methionine-choline-deficient (MCD) diet] is a well-established model of nonalcoholic steatohepatitis (NASH), yet brain metabolism has not been studied in this model. We hypothesized that supplemental betaine would protect both the liver and brain in this model and that any benefit to the brain would be due to improved liver metabolism because betaine is a methyl-donor in liver methylation but is not metabolically active in the brain. We fed male Sprague-Dawley rats a control diet, MCD diet, or betaine-supplemented MCD (MCD+B) diet for 8 wk and collected blood and tissue. As expected, betaine prevented MCD diet-induced NASH. However, contrary to our prediction, it did not appear to do so by stimulating methylation; the MCD+B diet worsened hyperhomocysteinemia and depressed liver methylation potential 8-fold compared with the MCD diet. Instead, it significantly increased the expression of genes involved in ß-oxidation: fibroblast growth factor 21 and peroxisome proliferator-activated receptor α. In contrast to that of the liver, brain methylation potential was unaffected by diet. Nevertheless, several phospholipid (PL) subclasses involved in stabilizing brain membranes were decreased by the MCD diet, and these improved modestly with betaine. The protective effect of betaine is likely due to the stimulation of ß-oxidation in liver and the effects on PL metabolism in brain.-Abu Ahmad, N., Raizman, M., Weizmann, N., Wasek, B., Arning, E., Bottiglieri, T., Tirosh, O., Troen, A. M. Betaine attenuates pathology by stimulating lipid oxidation in liver and regulating phospholipid metabolism in brain of methionine-choline-deficient rats.


Assuntos
Betaína/uso terapêutico , Deficiência de Colina/tratamento farmacológico , Deficiência de Colina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metionina/deficiência , Metionina/metabolismo , Fosfolipídeos/metabolismo , Animais , Western Blotting , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Sprague-Dawley
8.
FASEB J ; 33(2): 2563-2573, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30303736

RESUMO

In humans, vitamin B12 deficiency causes peripheral and CNS manifestations. Loss of myelin in the peripheral nerves and the spinal cord (SC) contributes to peripheral neuropathy and motor deficits. The metabolic basis for the demyelination and brain disorder is unknown. The transcobalamin receptor-knockout mouse ( Cd320-/-) develops cobalamin (Cbl) deficiency in the nervous system, with mild anemia. A decreased S-adenosylmethionine: S-adenosylhomocysteine ratio and increased methionine were seen in the brain with no significant changes in neurotransmitter metabolites. The structural pathology in the SC presented as loss of myelin in the axonal tracts with inflammation. The sciatic nerve (SN) showed increased nonuniform, internodal segments suggesting demyelination, and remyelination in progress. Consistent with these changes, the Cd320-/- mouse showed an increased latency to thermal nociception. Further, lower amplitude of compound action potential in the SN suggested that the functional capacity of the heavily myelinated axons were preferentially compromised, leading to loss of peripheral sensation. Although the metabolic basis for the demyelination and the structural and functional alterations of the nervous system in Cbl deficiency remain unresolved, the Cd320-/- mouse provides a unique model to investigate the pathologic consequences of vitamin B12 deficiency. -Arora, K., Sequeira, J. M., Alarcon, J. M., Wasek, B., Arning, E., Bottiglieri, T., Quadros, E. V. Neuropathology of vitamin B12 deficiency in the Cd320-/- mouse.


Assuntos
Encéfalo/patologia , Doenças do Sistema Nervoso/patologia , Nociceptividade , Receptores de Superfície Celular/fisiologia , Deficiência de Vitamina B 12/complicações , Animais , Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Neurotransmissores/metabolismo , Deficiência de Vitamina B 12/fisiopatologia
9.
Proc Natl Acad Sci U S A ; 113(12): 3347-52, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951658

RESUMO

Elevated levels of the ß-amyloid peptide (Aß) are thought to contribute to cognitive and behavioral impairments observed in Alzheimer's disease (AD). Protein phosphatase 2A (PP2A) participates in multiple molecular pathways implicated in AD, and its expression and activity are reduced in postmortem brains of AD patients. PP2A is regulated by protein methylation, and impaired PP2A methylation is thought to contribute to increased AD risk in hyperhomocysteinemic individuals. To examine further the link between PP2A and AD, we generated transgenic mice that overexpress the PP2A methylesterase, protein phosphatase methylesterase-1 (PME-1), or the PP2A methyltransferase, leucine carboxyl methyltransferase-1 (LCMT-1), and examined the sensitivity of these animals to behavioral and electrophysiological impairments caused by exogenous Aß exposure. We found that PME-1 overexpression enhanced these impairments, whereas LCMT-1 overexpression protected against Aß-induced impairments. Neither transgene affected Aß production or the electrophysiological response to low concentrations of Aß, suggesting that these manipulations selectively affect the pathological response to elevated Aß levels. Together these data identify a molecular mechanism linking PP2A to the development of AD-related cognitive impairments that might be therapeutically exploited to target selectively the pathological effects caused by elevated Aß levels in AD patients.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Transtornos Cognitivos/fisiopatologia , Proteína Fosfatase 2/metabolismo , Animais , Comportamento Animal , Metilação , Camundongos , Camundongos Transgênicos
10.
Mol Nutr Food Res ; 68(5): e2300355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327171

RESUMO

SCOPE: Disturbances in one-carbon metabolism contribute to nonalcoholic fatty liver disease (NAFLD) which encompasses steatosis, steatohepatitis, fibrosis, and cirrhosis. The goal is to examine impact of folate deficiency and the Mthfr677C >T variant on NAFLD. METHODS AND RESULTS: This study uses the new Mthfr677C >T mouse model for the human MTHFR677C >T variant. Mthfr677CC and Mthfr677TT mice were fed control diet (CD) or folate-deficient (FD) diets for 4 months. FD and Mthfr677TT alter choline/methyl metabolites in liver and/or plasma (decreased S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio, methyltetrahydrofolate, and betaine; increased homocysteine [Hcy]). FD, with contribution from Mthfr677TT, provokes fibrosis in males. Studies of normal livers reveal alterations in plasma markers and gene expression that suggest an underlying predisposition to fibrosis induced by FD and/or Mthfr677TT in males. These changes are absent or reverse in females, consistent with the sex disparity of fibrosis. Sex-based differences in methylation potential, betaine, sphingomyelin, and trimethylamine-N-oxide (TMAO) levels may prevent fibrogenesis in females. In contrast, Mthfr677TT alters choline metabolism, dysregulates expression of lipid metabolism genes, and promotes steatosis in females. CONCLUSION: This study suggests that folate deficiency predisposes males to fibrosis, which is exacerbated by Mthfr677TT, whereas Mthfr677TT predisposes females to steatosis, and reveal novel contributory mechanisms for these NAFLD-related disorders.


Assuntos
Deficiência de Ácido Fólico , Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Feminino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Betaína , Deficiência de Ácido Fólico/metabolismo , Ácido Fólico , Metilenotetra-Hidrofolato Redutase (NADPH2) , Genótipo , Cirrose Hepática/etiologia , S-Adenosilmetionina , Colina/metabolismo , Homocisteína
11.
J Neurosci ; 32(27): 9173-81, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22764226

RESUMO

Folate deficiency and hypomethylation have been implicated in a number of age-related neurodegenerative disorders including dementia and Parkinson's disease (PD). Levodopa (L-dopa) therapy in PD patients has been shown to cause an increase in plasma total homocysteine as well as depleting cellular concentrations of the methyl donor, S-adenosylmethionine (SAM), and increasing the demethylated product S-adenosylhomocysteine (SAH). Modulation of the cellular SAM/SAH ratio can influence activity of methyltransferase enzymes, including leucine carboxyl methyltransferase that specifically methylates Ser/Thr protein phosphatase 2A (PP2A), a major Tau phosphatase. Here we show in human SH-SY5Y cells, in dopaminergic neurons, and in wild-type mice that l-dopa results in a reduced SAM/SAH ratio that is associated with hypomethylation of PP2A and increased phosphorylation of Tau (p-Tau) at the Alzheimer's disease-like PHF-1 phospho-epitope. The effect of L-dopa on PP2A and p-Tau was exacerbated in cells exposed to folate deficiency. In the folate-deficient mouse model, L-dopa resulted in a marked depletion of SAM and an increase in SAH in various brain regions with parallel downregulation of PP2A methylation and increased Tau phosphorylation. L-Dopa also enhanced demethylated PP2A amounts in the liver. These findings reveal a novel mechanism involving methylation-dependent pathways in L-dopa induces PP2A hypomethylation and increases Tau phosphorylation, which may be potentially detrimental to neuronal cells.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/enzimologia , Levodopa/toxicidade , Degeneração Neural/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas tau/metabolismo , Animais , Antiparkinsonianos/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Masculino , Metilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/induzido quimicamente , Degeneração Neural/fisiopatologia , Neuroblastoma , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Cultura Primária de Células , Proteína Fosfatase 2/antagonistas & inibidores , Proteínas tau/agonistas , Proteínas tau/biossíntese
12.
Mol Genet Metab ; 110 Suppl: S71-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23999161

RESUMO

BACKGROUND: Our laboratory seeks a pharmacotherapeutic intervention for PKU that utilizes non-physiological amino acids (NPAAs) to block the accumulation of phenylalanine (Phe) in the brain. In previous studies (Vogel et al. 2013), methylation of the amino group of 2-aminoisobutyrate (AIB) provided an enhanced degree of selectivity for Phe restriction into the brain of Pah(enu2) mice in comparison to unmethylated AIB, leading to the hypothesis that 2-(methylamino)alkanoic acid analogs of AIB might represent targeted inhibitors of Phe accretion into the brain. METHODS: Pah(enu2) and control mice were intraperitoneally administered (500-750 mg/kg body weight, once daily; standard 19% protein diet) AIB, methyl AIB (MAIB), isovaline, and two MAIB analogs, 2-methyl-2-(methylamino)butanoic (MeVal) and 3-methyl-2-(methylamino)pentanoic (MePent) acids for one week, followed by brain and blood isolation for amino acid analyses using UPLC. RESULTS: In the brain, AIB significantly reduced Phe accretion in Pah(enu2) mice, while MeVal significantly improved glutamine and aspartic acids. Four of five test compounds improved brain threonine and arginine levels. AIB, MAIB and IsoVal significantly reduced blood Phe, with no effect of any drug intervention on other sera amino acids. CONCLUSIONS: Further evaluation of AIB and the 2-(methylamino)alkanoic acids as inhibitors of brain Phe accumulation in Pah(enu2) mice is warranted, with more detailed evaluations of route of administration, combinatorial intervention, and detailed toxicity studies.


Assuntos
Ácidos Acíclicos/farmacologia , Ácidos Aminoisobutíricos/farmacologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isoleucina/análogos & derivados , Fenilalanina/metabolismo , Fenilcetonúrias/tratamento farmacológico , Valina/análogos & derivados , Ácidos Acíclicos/administração & dosagem , Ácidos Aminoisobutíricos/administração & dosagem , Animais , Modelos Animais de Doenças , Humanos , Isoleucina/administração & dosagem , Isoleucina/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/química , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Metilação , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular , Especificidade de Órgãos , Fenilalanina/sangue , Conformação Proteica , Dobramento de Proteína , Valina/administração & dosagem , Valina/farmacologia
13.
J Inherit Metab Dis ; 36(3): 513-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22976763

RESUMO

Transport of large neutral amino acids (LNAA) across the blood brain barrier (BBB) is facilitated by the L-type amino acid transporter, LAT1. Peripheral accumulation of one LNAA (e.g., phenylalanine (phe) in PKU) is predicted to increase uptake of the offending amino acid to the detriment of others, resulting in disruption of brain amino acid homeostasis. We hypothesized that selected non-physiological amino acids (NPAAs) such as DL-norleucine (NL), 2-aminonorbornane (NB; 2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid), 2-aminoisobutyrate (AIB), and N-methyl-aminoisobutyrate (MAIB), acting as competitive inhibitors of various brain amino acid transporters, could reduce brain phe in Pah (enu2) mice, a relevant murine model of PKU. Oral feeding of 5 % NL, 5 % AIB, 0.5 % NB and 3 % MAIB reduced brain phe by 56 % (p < 0.01), -1 % (p = NS), 27 % (p < 0.05) and 14 % (p < 0.01), respectively, compared to untreated subjects. Significant effects on other LNAAs (tyrosine, methionine, branched chain amino acids) were also observed, however, with MAIB displaying the mildest effects. Of interest, MAIB represents an inhibitor of the system A (alanine) transporter that primarily traffics small amino acids and not LNAAs. Our studies represent the first in vivo use of these NPAAs in Pah (enu2) mice, and provide proof-of-principle for their further preclinical development, with the long-term objective of identifying NPAA combinations and concentrations that selectively restrict brain phe transport while minimally impacting other LNAAs and downstream intermediates.


Assuntos
Aminoácidos/uso terapêutico , Encéfalo/metabolismo , Fenilalanina/metabolismo , Fenilcetonúrias/tratamento farmacológico , Aminoácidos Cíclicos/uso terapêutico , Ácidos Aminoisobutíricos/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Terapia de Alvo Molecular , Norleucina/uso terapêutico , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Projetos Piloto
14.
Nutrients ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678154

RESUMO

Breastfeeding is the gold standard for early nutrition. Metabolites from the one-carbon metabolism pool are crucial for infant development. The aim of this study is to compare the breast-milk one-carbon metabolic profile to other biofluids where these metabolites are present, including cord and adult blood plasma as well as cerebrospinal fluid. Breast milk (n = 142), cord blood plasma (n = 23), maternal plasma (n = 28), aging adult plasma (n = 91), cerebrospinal fluid (n = 92), and infant milk formula (n = 11) samples were analyzed by LC-MS/MS to quantify choline, betaine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine, and cystathionine. Differences between groups were visualized by principal component analysis and analyzed by Kruskal-Wallis test. Correlation analysis was performed between one-carbon metabolites in human breast milk. Principal component analysis based on these metabolites separated breast milk samples from other biofluids. The S-adenosylmethionine (SAM) concentration was significantly higher in breast milk compared to the other biofluids and was absent in infant milk formulas. Despite many significant correlations between metabolites in one-carbon metabolism, there were no significant correlations between SAM and methionine or total homocysteine. Together, our data indicate a high concentration of SAM in breast milk, which may suggest a strong demand for this metabolite during infant early growth while its absence in infant milk formulas may indicate the inadequacy of this vital metabolic nutrient.


Assuntos
Leite Humano , S-Adenosilmetionina , Adulto , Criança , Lactente , Feminino , Humanos , S-Adenosilmetionina/metabolismo , Cromatografia Líquida , Leite Humano/metabolismo , Carbono , Espectrometria de Massas em Tandem , Metionina/metabolismo , Racemetionina , S-Adenosil-Homocisteína/metabolismo , Homocisteína
15.
Neural Regen Res ; 18(11): 2443-2448, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37282475

RESUMO

Maternal one-carbon metabolism plays an important role in early life programming. There is a well-established connection between the fetal environment and the health status of the offspring. However, there is a knowledge gap on how maternal nutrition impacts stroke outcomes in offspring. The aim of our study was to investigate the role of maternal dietary deficiencies in folic acid or choline on stroke outcomes in 3-month-old offspring. Adult female mice were fed a folic acid-deficient diet, choline-deficient diet, or control diet 4 weeks before pregnancy. They were continued on diets during pregnancy and lactation. Male and female offspring were weaned onto a control diet and at 2 months of age were subjected to ischemic stroke within the sensorimotor cortex via photothrombotic damage. Mothers maintained on either a folic acid-deficient diet or choline-deficient diet had reduced levels of S-adenosylmethionine in the liver and S-adenosylhomocysteine in the plasma. After ischemic stroke, motor function was impaired in 3-month-old offspring from mothers receiving either a folic acid-deficient diet or choline-deficient diet compared to the animals receiving a control diet. In brain tissue, there was no difference in ischemic damage volume. When protein levels were assessed in ischemic brain tissue, there were lower levels of active caspase-3 and hypoxia-inducible factor 1α in males compared to females and betaine levels were reduced in offspring from the mothers receiving a choline-deficient diet. Our results demonstrate that a deficient maternal diet at critical time points in neurodevelopment results in worse stroke outcomes. This study emphasizes the importance of maternal diet and the impact it can have on offspring health.

16.
Methods Mol Biol ; 2546: 253-260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127595

RESUMO

We describe a simple stable isotope dilution method for accurate and precise measurement of cerebrospinal fluid (CSF) lactate as a clinical diagnostic test. Lactate is produced from cellular metabolism, primarily in muscle cells, and provides a source of energy especially during instances of low oxygen levels. Measurement of lactate in CSF provides diagnostic information regarding the body's oxidative metabolism including diagnosis of lactate acidosis, aiding in the diagnosis of blood-brain barrier glucose transporter defect and differentiation between bacterial and viral meningitis. Determination of lactate in CSF (20 µL) was performed utilizing high-performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Lactate in CSF is determined by a 1:10 dilution with internal standard (sodium lacate-d3) and injected directly onto the HPLC-ESI-MS/MS system. Each assay is quantified using a six-point standard curve (0.625-20 mM) and has an analytical measurement range of 0.3-20 mM.


Assuntos
Ácido Láctico , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Isótopos , Sódio , Espectrometria de Massas em Tandem/métodos
17.
Methods Mol Biol ; 2546: 35-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127576

RESUMO

We describe a simple stable isotope dilution method for accurate determination of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in plasma as a clinical diagnostic test. Determination of SAM/SAH in plasma (20 µL) was performed by high-performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Calibrators (SAM and SAH) and internal standards (2H3-SAM and 2H4-SAH) were included in each analytical run for calibration. Sample preparation involved combining 20 µL sample with 180 µL of internal standard solution consisting of heavy-isotope-labeled internal standards in mobile phase A and filtering by ultracentrifugation through a 10 kd MW cutoff membrane. Sample filtrate (3 µL) was injected by a Shimadzu Nexera LC System interfaced with a 5500 QTRAP® (Sciex). Chromatographic separation was achieved on a 250 mm × 2.0 mm EZ-faast column from Phenomenex. Samples were eluted at a flow rate of 0.20 mL/min with a binary gradient with a total run time of 10 min. The source operated in positive ion mode at an ion spray voltage of +5000 V. SAM and SAH resolved by a gradient to 100% methanol with retention times of 5.8 and 5.5 min, respectively. HPLC chromatographic conditions did not produce complete separation of SAM and SAH, but they were completely discerned by their different fragmentation pattern in the mass spectrometer working in the MS-MS mode. The observed m/z values of the fragment ions were m/z 399→250 for SAM, m/z 385→136 for SAH, m/z 402→250 for 2H3-SAM, and m/z 203→46. The calibration curve was linear over the range of 12.5-5000 nmol/L for SAM and SAH.


Assuntos
S-Adenosilmetionina , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Metanol , S-Adenosil-Homocisteína , Espectrometria de Massas em Tandem/métodos
18.
Methods Mol Biol ; 2546: 165-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127587

RESUMO

We describe a simple stable isotope dilution method for accurate and precise measurement of γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter in human cerebrospinal fluid (CSF) as a clinical diagnostic test. Determination of CSF GABA has clinical utility in diagnosing inborn errors of GABA metabolism, specifically for deficiencies of GABA-transaminase and succinic semialdehyde dehydrogenase. Quantitation of CSF GABA is performed utilizing high-performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analysis of free and total GABA requires two individual sample preparations and mass spectrometry analyses. Free GABA in CSF is determined by a 1:2 dilution with internal standard (GABA-D2) and injected directly onto the HPLC-ESI-MS/MS system. Quantitation of total GABA in CSF requires additional sample preparation in order to hydrolyze all the conjugated GABA in the sample to free GABA. Complete hydrolysis is performed incubating sample at >100 °C in acidic conditions (hydrochloric acid) for 4 h. The sample is then further diluted 1:10 with a 90% acetonitrile/0.1% formic acid solution and injected into the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve and is linear from 6 to 1000 nM and 0.63 to 80 µM for free and total GABA, respectively.


Assuntos
Succinato-Semialdeído Desidrogenase , Espectrometria de Massas em Tandem , Acetonitrilas , Cromatografia Líquida , Humanos , Ácido Clorídrico , Isótopos , Espectrometria de Massas em Tandem/métodos , Transaminases , Ácido gama-Aminobutírico
19.
Methods Mol Biol ; 2546: 311-319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127600

RESUMO

We describe a simple stable isotope dilution method for accurate and precise measurement of cerebrospinal fluid (CSF) 5-methyltetrahydrofolate (5-MTHF) as a clinical diagnostic test. 5-MTHF is the main biologically active form of folate and is involved in the regulation of homocysteine and numerous methylation reactions, including synthesis of neurotransmitters, lipids, DNA, and RNA. Measurement of 5-MTHF in CSF provides diagnostic information regarding disorders affecting folate metabolism within the central nervous system, in particular inborn errors of folate metabolism and cerebral folate deficiency. Determination of 5-MTHF in CSF (50 µL) was performed utilizing high-performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). 5-MTHF in CSF is determined by a 1:2 dilution with internal standard (5-MTHF-13C5) and injected directly onto the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve (25-400 nM) and has an analytical measurement range of 3-1000 nM.


Assuntos
Ácido Fólico , Espectrometria de Massas em Tandem , Cromatografia Líquida , DNA , Homocisteína , Isótopos , Lipídeos , RNA , Espectrometria de Massas em Tandem/métodos , Tetra-Hidrofolatos
20.
J Cereb Blood Flow Metab ; 42(5): 771-787, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35023380

RESUMO

Vascular contributions to cognitive impairment and dementia (VCID) are the second leading cause of dementia behind Alzheimer's disease. Apolipoprotein E (ApoE) is a lipid transporting lipoprotein found within the brain and periphery. The APOE ε4 allele is the strongest genetic risk factor for late onset Alzheimer's disease and is a risk factor for VCID. Our lab has previously utilized a dietary model of hyperhomocysteinemia (HHcy) to induce VCID pathology and cognitive deficits in mice. This diet induces perivascular inflammation through cumulative oxidative damage leading to glial mediated inflammation and blood brain barrier breakdown. Here, we examine the impact of ApoE ε4 compared to ε3 alleles on the progression of VCID pathology and inflammation in our dietary model of HHcy. We report a significant resistance to HHcy induction in ε4 mice, accompanied by a number of related differences related to homocysteine (Hcy) metabolism and methylation cycle, or 1-C, metabolites. There were also significant differences in inflammatory profiles between ε3 and ε4 mice, as well as significant reduction in Serpina3n, a serine protease inhibitor associated with ApoE ε4, expression in ε4 HHcy mice relative to ε4 controls. Finally, we find evidence of pervasive sex differences within both genotypes in response to HHcy induction.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Demência Vascular , Hiper-Homocisteinemia , Alelos , Doença de Alzheimer/genética , Animais , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Demência Vascular/genética , Dieta , Feminino , Técnicas de Introdução de Genes , Genótipo , Humanos , Hiper-Homocisteinemia/genética , Inflamação/genética , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA