Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(3): e1009464, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780514

RESUMO

Here, we report the first complete genomes of three cultivable treponeme species from bovine digital dermatitis (DD) skin lesions, two comparative human treponemes, considered indistinguishable from bovine DD species, and a bovine gastrointestinal (GI) treponeme isolate. Key genomic differences between bovine and human treponemes implicate microbial mechanisms that enhance knowledge of how DD, a severe disease of ruminants, has emerged into a prolific, worldwide disease. Bovine DD treponemes have additional oxidative stress genes compared to nearest human-isolated relatives, suggesting better oxidative stress tolerance, and potentially explaining how bovine strains can colonize skin surfaces. Comparison of both bovine DD and GI treponemes as well as bovine pathogenic and human non-pathogenic saprophyte Treponema phagedenis strains indicates genes encoding a five-enzyme biosynthetic pathway for production of 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, a rare di-N-acetylated mannuronic acid sugar, as important for pathogenesis. Bovine T. phagedenis strains further differed from human strains by having unique genetic clusters including components of a type IV secretion system and a phosphate utilisation system including phoU, a gene associated with osmotic stress survival. Proteomic analyses confirmed bovine derived T. phagedenis exhibits expression of PhoU but not the putative secretion system, whilst the novel mannuronic acid pathway was expressed in near entirety across the DD treponemes. Analysis of osmotic stress response in water identified a difference between bovine and human T. phagedenis with bovine strains exhibiting enhanced survival. This novel mechanism could enable a selective advantage, allowing environmental persistence and transmission of bovine T. phagedenis. Finally, we investigated putative outer membrane protein (OMP) ortholog families across the DD treponemes and identified several families as multi-specific adhesins capable of binding extra cellular matrix (ECM) components. One bovine pathogen specific adhesin ortholog family showed considerable serodiagnostic potential with the Treponema medium representative demonstrating considerable disease specificity (91.6%). This work has shed light on treponeme host adaptation and has identified candidate molecules for future diagnostics, vaccination and therapeutic intervention.


Assuntos
Treponema/genética , Infecções por Treponema/genética , Animais , Bovinos , DNA Bacteriano , Dermatite Digital/microbiologia , Humanos , Filogenia
2.
Proc Natl Acad Sci U S A ; 116(45): 22764-22773, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636194

RESUMO

Neospora caninum, a cyst-forming apicomplexan parasite, is a leading cause of neuromuscular diseases in dogs as well as fetal abortion in cattle worldwide. The importance of the domestic and sylvatic life cycles of Neospora, and the role of vertical transmission in the expansion and transmission of infection in cattle, is not sufficiently understood. To elucidate the population genomics of Neospora, we genotyped 50 isolates collected worldwide from a wide range of hosts using 19 linked and unlinked genetic markers. Phylogenetic analysis and genetic distance indices resolved a single genotype of N. caninum Whole-genome sequencing of 7 isolates from 2 different continents identified high linkage disequilibrium, significant structural variation, but only limited polymorphism genome-wide, with only 5,766 biallelic single nucleotide polymorphisms (SNPs) total. Greater than half of these SNPs (∼3,000) clustered into 6 distinct haploblocks and each block possessed limited allelic diversity (with only 4 to 6 haplotypes resolved at each cluster). Importantly, the alleles at each haploblock had independently segregated across the strains sequenced, supporting a unisexual expansion model that is mosaic at 6 genomic blocks. Integrating seroprevalence data from African cattle, our data support a global selective sweep of a highly inbred livestock pathogen that originated within European dairy stock and expanded transcontinentally via unisexual mating and vertical transmission very recently, likely the result of human activities, including recurrent migration, domestication, and breed development of bovid and canid hosts within similar proximities.


Assuntos
Genoma , Interações Hospedeiro-Parasita , Neospora/genética , Animais , Bovinos , Genótipo , Recombinação Genética
3.
Infect Immun ; 87(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30510101

RESUMO

Toxoplasma gondii is associated with physiological effects in the host. Dysregulation of catecholamines in the central nervous system has previously been observed in chronically infected animals. In the study described here, the noradrenergic system was found to be suppressed with decreased levels of norepinephrine (NE) in brains of infected animals and in infected human and rat neural cells in vitro The mechanism responsible for the NE suppression was found to be downregulation of dopamine ß-hydroxylase (DBH) gene expression, encoding the enzyme that synthesizes norepinephrine from dopamine, with downregulation observed in vitro and in infected brain tissue, particularly in the dorsal locus coeruleus/pons region. The downregulation was sex specific, with males expressing reduced DBH mRNA levels whereas females were unchanged. Rather, DBH expression correlated with estrogen receptor in the female rat brains for this estrogen-regulated gene. DBH silencing was not a general response of neurons to infection, as human cytomegalovirus did not downregulate DBH expression. The noradrenergic-linked behaviors of sociability and arousal were altered in chronically infected animals, with a high correlation between DBH expression and infection intensity. A decrease in DBH expression in noradrenergic neurons can elevate dopamine levels, which provides a possible explanation for mixed observations of changes in this neurotransmitter with infection. Decreased NE is consistent with the loss of coordination and motor impairments associated with toxoplasmosis. Further, the altered norepinephrine synthesis observed here may, in part, explain behavioral effects of infection and associations with mental illness.


Assuntos
Catecolaminas/metabolismo , Doenças do Sistema Nervoso Central/parasitologia , Dopamina beta-Hidroxilase/metabolismo , Norepinefrina/metabolismo , Toxoplasmose/metabolismo , Animais , Encéfalo/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Dopamina/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Camundongos , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos
4.
Cell Tissue Res ; 375(2): 409-424, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30259138

RESUMO

The in vitro 3D culture of intestinal epithelium is a valuable resource in the study of its function. Organoid culture exploits stem cells' ability to regenerate and produce differentiated epithelium. Intestinal organoid models from rodent or human tissue are widely available whereas large animal models are not. Livestock enteric and zoonotic diseases elicit significant morbidity and mortality in animal and human populations. Therefore, livestock species-specific models may offer novel insights into host-pathogen interactions and disease responses. Bovine and porcine jejunum were obtained from an abattoir and their intestinal crypts isolated, suspended in Matrigel, cultured, cryopreserved and resuscitated. 'Rounding' of crypts occurred followed by budding and then enlargement of the organoids. Epithelial cells were characterised using immunofluorescent staining and confocal microscopy. Organoids were successfully infected with Toxoplasma gondii or Salmonella typhimurium. This 3D organoid model offers a long-term, renewable resource for investigating species-specific intestinal infections with a variety of pathogens.


Assuntos
Técnicas de Cultura de Células/métodos , Mucosa Intestinal/metabolismo , Animais , Bovinos , Diferenciação Celular , Criopreservação , Gado , Camundongos Endogâmicos C57BL , Organoides/metabolismo , Fenótipo , Salmonella typhimurium/fisiologia , Suínos , Sobrevivência de Tecidos , Toxoplasma/fisiologia
5.
Proteomics ; 18(16): e1800132, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29952134

RESUMO

Recently, 3D small intestinal organoids (enteroids) have been developed from cultures of intestinal stem cells which differentiate in vitro to generate all the differentiated epithelial cell types associated with the intestine and mimic the structural properties of the intestine observed in vivo. Small-molecule drug treatment can skew organoid epithelial cell differentiation toward particular lineages, and these skewed enteroids may provide useful tools to study specific epithelial cell populations, such as goblet and Paneth cells. However, the extent to which differentiated epithelial cell populations in these skewed enteroids represent their in vivo counterparts is not fully understood. This study utilises label-free quantitative proteomics to determine whether skewing murine enteroid cultures toward the goblet or Paneth cell lineages results in changes in abundance of proteins associated with these cell lineages in vivo. Here, proteomics data confirms that skewed enteroids recapitulate important features of the in vivo gut environment, demonstrating that they can serve as useful models for the investigation of normal and disease processes in the intestine. Furthermore, comparison of mass spectrometry data with histology data contained within the Human Protein Atlas identifies putative novel markers for goblet and Paneth cells.


Assuntos
Linhagem da Célula , Células Epiteliais/metabolismo , Células Caliciformes/metabolismo , Organoides/metabolismo , Celulas de Paneth/metabolismo , Proteômica/métodos , Animais , Benzotiazóis/farmacologia , Diferenciação Celular , Diaminas/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Caliciformes/citologia , Células Caliciformes/efeitos dos fármacos , Camundongos , Organoides/citologia , Organoides/efeitos dos fármacos , Celulas de Paneth/citologia , Celulas de Paneth/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tiazóis/farmacologia
6.
Mol Cell Proteomics ; 15(8): 2554-75, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27226403

RESUMO

Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-ß and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers.


Assuntos
Onchocerca/fisiologia , Oncocercose/parasitologia , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Animais , Bovinos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Interações Hospedeiro-Parasita , Humanos , Masculino , Onchocerca/metabolismo , Oncocercose/veterinária , Filogenia , Mapas de Interação de Proteínas
7.
Parasitol Res ; 116(10): 2707-2719, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28803361

RESUMO

Toxoplasma gondii and Neospora caninum are closely related intracellular protozoan parasites and tissue cyst-forming Coccidia of the phylum Apicomplexa. There are remarkable similarities between the morphology, genomes and transcriptomes of both parasites. Toxoplasma is zoonotic, with a wide host range and is mainly transmitted horizontally between its definitive host, the cat, and its intermediate hosts. Neospora causes disease within a narrow host range and with reduced virulence potential to the hosts. The dog is the definitive host of Neospora and its epidemiology in cattle mainly depends on vertical transmission. What causes these biological differences is not well understood. Since these parasites secrete an array of secretory proteins, including kinases, during infection to manipulate host cell responses. Host-parasite interactions due to phosphorylation of host cell proteins by T. gondii kinases enhance virulence and maintenance of infection. In this study, proteome-wide phosphorylation events of host cell proteins were investigated in response to infection with T. gondii and N. caninum using phosphoproteomic analyses, followed by pathway analysis on host signalling pathways. A few interesting differences in host responses at both the qualitative and quantitative levels were identified between the two infections; about one third of the phosphoproteomes, approximately 21% of the phospho-motifs and several pathways such as glycolysis/gluconeogenesis and mTOR pathways of the host cell were found differentially enriched between infection with these parasites. Identifying the differences in host-parasite interactions represents a promising step forward for uncovering the biological dissimilarities between both parasites.


Assuntos
Coccidiose/metabolismo , Neospora/fisiologia , Proteínas/metabolismo , Proteoma/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/metabolismo , Coccidiose/genética , Coccidiose/parasitologia , Interações Hospedeiro-Parasita , Humanos , Fosforilação , Proteínas/genética , Proteólise , Proteoma/genética , Toxoplasmose/genética , Toxoplasmose/parasitologia
8.
Mol Cell Proteomics ; 13(10): 2527-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24958169

RESUMO

Filarial nematodes (superfamily Filarioidea) are responsible for an annual global health burden of ∼6.3 million disability-adjusted life-years, which represents the greatest single component of morbidity attributable to helminths affecting humans. No vaccine exists for the major filarial diseases, lymphatic filariasis and onchocerciasis; in part because research on protective immunity against filariae has been constrained by the inability of the human-parasitic species to complete their lifecycles in laboratory mice. However, the rodent filaria Litomosoides sigmodontis has become a popular experimental model, as BALB/c mice are fully permissive for its development and reproduction. Here, we provide a comprehensive analysis of excretory-secretory products from L. sigmodontis across five lifecycle stages and identifications of host proteins associated with first-stage larvae (microfilariae) in the blood. Applying intensity-based quantification, we determined the abundance of 302 unique excretory-secretory proteins, of which 64.6% were present in quantifiable amounts only from gravid adult female nematodes. This lifecycle stage, together with immature microfilariae, released four proteins that have not previously been evaluated as vaccine candidates: a predicted 28.5 kDa filaria-specific protein, a zonadhesin and SCO-spondin-like protein, a vitellogenin, and a protein containing six metridin-like ShK toxin domains. Female nematodes also released two proteins derived from the obligate Wolbachia symbiont. Notably, excretory-secretory products from all parasite stages contained several uncharacterized members of the transthyretin-like protein family. Furthermore, biotin labeling revealed that redox proteins and enzymes involved in purinergic signaling were enriched on the adult nematode cuticle. Comparison of the L. sigmodontis adult secretome with that of the human-infective filarial nematode Brugia malayi (reported previously in three independent published studies) identified differences that suggest a considerable underlying diversity of potential immunomodulators. The molecules identified in L. sigmodontis excretory-secretory products show promise not only for vaccination against filarial infections, but for the amelioration of allergy and autoimmune diseases.


Assuntos
Filariose/parasitologia , Filarioidea/crescimento & desenvolvimento , Proteínas de Helminto/genética , Proteômica/métodos , Animais , Modelos Animais de Doenças , Feminino , Filariose/sangue , Filarioidea/classificação , Filarioidea/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Proteínas de Helminto/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fatores Sexuais
9.
Nucleic Acids Res ; 42(11): 7113-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24799432

RESUMO

Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct.


Assuntos
Variação Antigênica , Babesia/genética , Evolução Molecular , Genes de Protozoários , Interações Hospedeiro-Parasita/genética , Pontos de Quebra do Cromossomo , Genoma de Protozoário , Proteínas de Protozoários/genética , Recombinação Genética
10.
Proteomics ; 15(15): 2618-28, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25867681

RESUMO

Proteomics data can supplement genome annotation efforts, for example being used to confirm gene models or correct gene annotation errors. Here, we present a large-scale proteogenomics study of two important apicomplexan pathogens: Toxoplasma gondii and Neospora caninum. We queried proteomics data against a panel of official and alternate gene models generated directly from RNASeq data, using several newly generated and some previously published MS datasets for this meta-analysis. We identified a total of 201 996 and 39 953 peptide-spectrum matches for T. gondii and N. caninum, respectively, at a 1% peptide FDR threshold. This equated to the identification of 30 494 distinct peptide sequences and 2921 proteins (matches to official gene models) for T. gondii, and 8911 peptides/1273 proteins for N. caninum following stringent protein-level thresholding. We have also identified 289 and 140 loci for T. gondii and N. caninum, respectively, which mapped to RNA-Seq-derived gene models used in our analysis and apparently absent from the official annotation (release 10 from EuPathDB) of these species. We present several examples in our study where the RNA-Seq evidence can help in correction of the current gene model and can help in discovery of potential new genes. The findings of this study have been integrated into the EuPathDB. The data have been deposited to the ProteomeXchange with identifiers PXD000297and PXD000298.


Assuntos
Genômica/métodos , Neospora/genética , Neospora/metabolismo , Proteômica/métodos , Toxoplasma/genética , Toxoplasma/metabolismo , Sequência de Aminoácidos , Apicomplexa/genética , Apicomplexa/metabolismo , Bases de Dados Genéticas , Genes de Protozoários/genética , Anotação de Sequência Molecular/métodos , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de RNA/métodos , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem/métodos
11.
J Gen Virol ; 96(12): 3499-3506, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27257648

RESUMO

Infectious bronchitis is a highly contagious respiratory disease of poultry caused by the coronavirus infectious bronchitis virus (IBV). It was thought that coronavirus virions were composed of three major viral structural proteins until investigations of other coronaviruses showed that the virions also include viral non-structural and genus-specific accessory proteins as well as host-cell proteins. To study the proteome of IBV virions, virus was grown in embryonated chicken eggs, purified by sucrose-gradient ultracentrifugation and analysed by mass spectrometry. Analysis of three preparations of purified IBV yielded the three expected structural proteins plus 35 additional virion-associated host proteins. The virion-associated host proteins had a diverse range of functional attributions, being involved in cytoskeleton formation, RNA binding and protein folding pathways. Some of these proteins were unique to this study, while others were found to be orthologous to proteins identified in severe acute respiratory syndrome coronavirus virions and also virions from a number of other RNA and DNA viruses.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Vírus da Bronquite Infecciosa/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Alantoide/virologia , Animais , Embrião de Galinha , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/ultraestrutura , Espectrometria de Massas , Proteoma , Organismos Livres de Patógenos Específicos , Proteínas Virais/genética , Vírion/genética , Vírion/ultraestrutura
12.
Genome Res ; 22(12): 2467-77, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22919073

RESUMO

The α-proteobacterium Wolbachia is probably the most prevalent, vertically transmitted symbiont on Earth. In contrast with its wide distribution in arthropods, Wolbachia is restricted to one family of animal-parasitic nematodes, the Onchocercidae. This includes filarial pathogens such as Onchocerca volvulus, the cause of human onchocerciasis, or river blindness. The symbiosis between filariae and Wolbachia is obligate, although the basis of this dependency is not fully understood. Previous studies suggested that Wolbachia may provision metabolites (e.g., haem, riboflavin, and nucleotides) and/or contribute to immune defense. Importantly, Wolbachia is restricted to somatic tissues in adult male worms, whereas females also harbor bacteria in the germline. We sought to characterize the nature of the symbiosis between Wolbachia and O. ochengi, a bovine parasite representing the closest relative of O. volvulus. First, we sequenced the complete genome of Wolbachia strain wOo, which revealed an inability to synthesize riboflavin de novo. Using RNA-seq, we also generated endobacterial transcriptomes from male soma and female germline. In the soma, transcripts for membrane transport and respiration were up-regulated, while the gonad exhibited enrichment for DNA replication and translation. The most abundant Wolbachia proteins, as determined by geLC-MS, included ligands for mammalian Toll-like receptors. Enzymes involved in nucleotide synthesis were dominant among metabolism-related proteins, whereas the haem biosynthetic pathway was poorly represented. We conclude that Wolbachia may have a mitochondrion-like function in the soma, generating ATP for its host. Moreover, the abundance of immunogenic proteins in wOo suggests a role in diverting the immune system toward an ineffective antibacterial response.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Onchocerca volvulus/microbiologia , Simbiose/genética , Wolbachia/genética , Animais , Antibacterianos/metabolismo , Cromatografia Líquida , Replicação do DNA , DNA de Helmintos/genética , Feminino , Masculino , Proteômica/métodos , Riboflavina/metabolismo , Análise de Sequência de RNA , Espectrometria de Massas em Tandem , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Transcriptoma , Regulação para Cima , Wolbachia/imunologia
13.
J Clin Microbiol ; 53(10): 3133-40, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26157151

RESUMO

Giardia duodenalis is a major cause of infectious gastroenteritis worldwide, and it is diversified into eight genetic assemblages (A to H), which are distinguishable only by molecular typing. There is some evidence that the assemblages infecting humans (assemblages A and B) may have different transmission routes, but systematically acquired data, combining epidemiological and molecular findings, are required. We undertook a case-control study with Giardia genotyping in North West England, to determine general and parasite assemblage-specific risk factors. For people without a history of foreign travel, swimming in swimming pools and changing diapers were the most important risk factors for the disease. People infected with assemblage B reported a greater number of symptoms and higher frequencies of vomiting, abdominal pain, swollen stomach, and loss of appetite, compared with people infected with assemblage A. More importantly, keeping a dog was associated only with assemblage A infections, suggesting the presence of a potential zoonotic reservoir for this assemblage. This is the first case-control study to combine epidemiological data with Giardia genotyping, and it shows the importance of integrating these two levels of information for better understanding of the epidemiology of this pathogen.


Assuntos
Giardia/classificação , Giardia/isolamento & purificação , Giardíase/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Cães , Inglaterra/epidemiologia , Feminino , Genótipo , Técnicas de Genotipagem , Giardia/genética , Giardíase/parasitologia , Giardíase/patologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem , Zoonoses/epidemiologia , Zoonoses/parasitologia
14.
Nucleic Acids Res ; 41(Database issue): D706-13, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193253

RESUMO

The Library of Apicomplexan Metabolic Pathways (LAMP, http://www.llamp.net) is a web database that provides near complete mapping from genes to the central metabolic functions for some of the prominent intracellular parasites of the phylum Apicomplexa. This phylum includes the causative agents of malaria, toxoplasmosis and theileriosis-diseases with a huge economic and social impact. A number of apicomplexan genomes have been sequenced, but the accurate annotation of gene function remains challenging. We have adopted an approach called metabolic reconstruction, in which genes are systematically assigned to functions within pathways/networks for Toxoplasma gondii, Neospora caninum, Cryptosporidium and Theileria species, and Babesia bovis. Several functions missing from pathways have been identified, where the corresponding gene for an essential process appears to be absent from the current genome annotation. For each species, LAMP contains interactive diagrams of each pathway, hyperlinked to external resources and annotated with detailed information, including the sources of evidence used. We have also developed a section to highlight the overall metabolic capabilities of each species, such as the ability to synthesize or the dependence on the host for a particular metabolite. We expect this new database will become a valuable resource for fundamental and applied research on the Apicomplexa.


Assuntos
Apicomplexa/genética , Apicomplexa/metabolismo , Bases de Dados Genéticas , Genômica , Interações Hospedeiro-Parasita , Internet , Redes e Vias Metabólicas/genética
15.
Proteomics ; 14(23-24): 2731-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25297486

RESUMO

The recent massive increase in capability for sequencing genomes is producing enormous advances in our understanding of biological systems. However, there is a bottleneck in genome annotation--determining the structure of all transcribed genes. Experimental data from MS studies can play a major role in confirming and correcting gene structure--proteogenomics. However, there are some technical and practical challenges to overcome, since proteogenomics requires pipelines comprising a complex set of interconnected modules as well as bespoke routines, for example in protein inference and statistics. We are introducing a complete, open source pipeline for proteogenomics, called ProteoAnnotator, which incorporates a graphical user interface and implements the Proteomics Standards Initiative mzIdentML standard for each analysis stage. All steps are included as standalone modules with the mzIdentML library, allowing other groups to re-use the whole pipeline or constituent parts within other tools. We have developed new modules for pre-processing and combining multiple search databases, for performing peptide-level statistics on mzIdentML files, for scoring grouped protein identifications matched to a given genomic locus to validate that updates to the official gene models are statistically sound and for mapping end results back onto the genome. ProteoAnnotator is available from http://www.proteoannotator.org/. All MS data have been deposited in the ProteomeXchange with identifiers PXD001042 and PXD001390 (http://proteomecentral.proteomexchange.org/dataset/PXD001042; http://proteomecentral.proteomexchange.org/dataset/PXD001390).


Assuntos
Genômica/métodos , Proteínas/metabolismo , Proteômica/métodos , Software
16.
J Proteome Res ; 13(11): 5120-35, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25158218

RESUMO

Viral pathogenesis in the infected cell is a balance between antiviral responses and subversion of host-cell processes. Many viral proteins specifically interact with host-cell proteins to promote virus biology. Understanding these interactions can lead to knowledge gains about infection and provide potential targets for antiviral therapy. One such virus is Ebola, which has profound consequences for human health and causes viral hemorrhagic fever where case fatality rates can approach 90%. The Ebola virus VP24 protein plays a critical role in the evasion of the host immune response and is likely to interact with multiple cellular proteins. To map these interactions and better understand the potential functions of VP24, label-free quantitative proteomics was used to identify cellular proteins that had a high probability of forming the VP24 cellular interactome. Several known interactions were confirmed, thus placing confidence in the technique, but new interactions were also discovered including one with ATP1A1, which is involved in osmoregulation and cell signaling. Disrupting the activity of ATP1A1 in Ebola-virus-infected cells with a small molecule inhibitor resulted in a decrease in progeny virus, thus illustrating how quantitative proteomics can be used to identify potential therapeutic targets.


Assuntos
Ebolavirus/patogenicidade , Mapeamento de Interação de Proteínas/métodos , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/virologia , Ebolavirus/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293/efeitos dos fármacos , Células HEK293/virologia , Interações Hospedeiro-Patógeno , Humanos , Espectrometria de Massas/métodos , Ouabaína/farmacologia , Proteômica/métodos , Reprodutibilidade dos Testes , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Proteínas Virais/genética
17.
PLoS Pathog ; 8(3): e1002567, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457617

RESUMO

Toxoplasma gondii is a zoonotic protozoan parasite which infects nearly one third of the human population and is found in an extraordinary range of vertebrate hosts. Its epidemiology depends heavily on horizontal transmission, especially between rodents and its definitive host, the cat. Neospora caninum is a recently discovered close relative of Toxoplasma, whose definitive host is the dog. Both species are tissue-dwelling Coccidia and members of the phylum Apicomplexa; they share many common features, but Neospora neither infects humans nor shares the same wide host range as Toxoplasma, rather it shows a striking preference for highly efficient vertical transmission in cattle. These species therefore provide a remarkable opportunity to investigate mechanisms of host restriction, transmission strategies, virulence and zoonotic potential. We sequenced the genome of N. caninum and transcriptomes of the invasive stage of both species, undertaking an extensive comparative genomics and transcriptomics analysis. We estimate that these organisms diverged from their common ancestor around 28 million years ago and find that both genomes and gene expression are remarkably conserved. However, in N. caninum we identified an unexpected expansion of surface antigen gene families and the divergence of secreted virulence factors, including rhoptry kinases. Specifically we show that the rhoptry kinase ROP18 is pseudogenised in N. caninum and that, as a possible consequence, Neospora is unable to phosphorylate host immunity-related GTPases, as Toxoplasma does. This defense strategy is thought to be key to virulence in Toxoplasma. We conclude that the ecological niches occupied by these species are influenced by a relatively small number of gene products which operate at the host-parasite interface and that the dominance of vertical transmission in N. caninum may be associated with the evolution of reduced virulence in this species.


Assuntos
Coccidiose/parasitologia , Genômica , Neospora/genética , Toxoplasma/genética , Toxoplasmose/parasitologia , Animais , Coccidiose/transmissão , Hibridização Genômica Comparativa , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/fisiologia , Transmissão Vertical de Doenças Infecciosas , Neospora/patogenicidade , Toxoplasma/patogenicidade , Toxoplasmose/transmissão , Virulência , Zoonoses/transmissão
18.
Discov Immunol ; 2(1): kyad018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38567056

RESUMO

Cross-talk between dendritic cells (DCs) and the intestinal epithelium is important in the decision to mount a protective immune response to a pathogen or to regulate potentially damaging responses to food antigens and the microbiota. Failures in this decision-making process contribute to the development of intestinal inflammation, making the molecular signals that pass between DCs and intestinal epithelial cells potential therapeutic targets. Until now, in vitro models with sufficient complexity to understand these interactions have been lacking. Here, we outline the development of a co-culture model of in vitro differentiated 'gut-like' DCs with small intestinal organoids (enteroids). Sequential exposure of murine bone marrow progenitors to Flt3L, granulocyte macrophage colony-stimulating factor (GM-CSF) and all-trans-retinoic acid (RA) resulted in the generation of a distinct population of conventional DCs expressing CD11b+SIRPα+CD103+/- (cDC2) exhibiting retinaldehyde dehydrogenase (RALDH) activity. These 'gut-like' DCs extended transepithelial dendrites across the intact epithelium of enteroids. 'Gut-like' DC in co-culture with enteroids can be utilized to define how epithelial cells and cDCs communicate in the intestine under a variety of different physiological conditions, including exposure to different nutrients, natural products, components of the microbiota, or pathogens. Surprisingly, we found that co-culture with enteroids resulted in a loss of RALDH activity in 'gut-like' DCs. Continued provision of GM-CSF and RA during co-culture was required to oppose putative negative signals from the enteroid epithelium. Our data contribute to a growing understanding of how intestinal cDCs assess environmental conditions to ensure appropriate activation of the immune response.

19.
Proteomics ; 11(16): 3369-79, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21751351

RESUMO

Selection on running capacity has created rat phenotypes of high-capacity runners (HCRs) that have enhanced cardiac function and low-capacity runners (LCRs) that exhibit risk factors of metabolic syndrome. We analysed hearts of HCRs and LCRs from generation 22 of selection using DIGE and identified proteins from MS database searches. The running capacity of HCRs was six-fold greater than LCRs. DIGE resolved 957 spots and proteins were unambiguously identified in 369 spots. Protein expression profiling detected 67 statistically significant (p<0.05; false discovery rate <10%, calculated using q-values) differences between HCRs and LCRs. Hearts of HCR rats exhibited robust increases in the abundance of each enzyme of the ß-oxidation pathway. In contrast, LCR hearts were characterised by the modulation of enzymes associated with ketone body or amino acid metabolism. LCRs also exhibited enhanced expression of antioxidant enzymes such as catalase and greater phosphorylation of α B-crystallin at serine 59, which is a common point of convergence in cardiac stress signalling. Thus, proteomic analysis revealed selection on low running capacity is associated with perturbations in cardiac energy metabolism and provided the first evidence that the LCR cardiac proteome is exposed to greater oxidative stress.


Assuntos
Tolerância ao Exercício/fisiologia , Coração/fisiologia , Miocárdio/metabolismo , Proteoma/análise , Corrida/fisiologia , Animais , Eletroforese em Gel Bidimensional , Metabolismo Energético/fisiologia , Processamento de Imagem Assistida por Computador , Immunoblotting , Miocárdio/química , Miocárdio/enzimologia , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Proteoma/metabolismo , Proteoma/fisiologia , Proteômica , Ratos , Espectrometria de Massas em Tandem
20.
Pathogens ; 9(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942559

RESUMO

Despite the importance of bovine neosporosis, relevant knowledge gaps remain concerning the pathogenic mechanisms of Neospora caninum. Infection of the placenta is a crucial event in the pathogenesis of the disease; however, very little is known about the relation of the parasite with this target organ. Recent studies have shown that isolates with important variations in virulence also show different interactions with the bovine trophoblast cell line F3 in terms of proliferative capacity and transcriptome host cell modulation. Herein, we used the same model of infection to study the interaction of Neospora with these target cells at the proteomic level using LC-MS/MS over the course of the parasite lytic cycle. We also analysed the proteome differences between high- (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates. The results showed that mitochondrial processes and metabolism were the main points of Neospora-host interactions. Interestingly, Nc-Spain1H infection showed a higher level of influence on the host cell proteome than Nc-Spain7 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA