RESUMO
Borrelia spirochetes are the causative agents of Lyme disease and relapsing fever, two of the most common tick-borne illnesses. A characteristic feature of these spirochetes is their highly segmented genomes which consists of a linear chromosome and a mixture of up to approximately 24 linear and circular extrachromosomal plasmids. The complexity of this genomic arrangement requires multiple strategies for efficient replication and partitioning during cell division, including the generation of hairpin ends found on linear replicons mediated by the essential enzyme ResT, a telomere resolvase. Using an integrative structural biology approach employing advanced modelling, circular dichroism, X-ray crystallography and small-angle X-ray scattering, we have generated high resolution structural data on ResT from B. garinii. Our data provides the first high-resolution structures of ResT from Borrelia spirochetes and revealed active site positioning in the catalytic domain. We also demonstrate that the C-terminal domain of ResT is required for both transesterification steps of telomere resolution, and is a requirement for DNA binding, distinguishing ResT from other telomere resolvases from phage and bacteria. These results advance our understanding of the molecular function of this essential enzyme involved in genome maintenance in Borrelia pathogens.
Assuntos
Proteínas de Bactérias , Telômero , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Telômero/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/enzimologia , Domínio Catalítico , Domínios Proteicos , Doença de Lyme/microbiologia , EndodesoxirribonucleasesRESUMO
Domains of unknown function (DUFs) continue to comprise a significant portion of bacterial proteomes, with more than 20% of bacterial proteins remaining annotated as DUFs. The characterization of their molecular structure can provide valuable insight that is not captured by the primary sequence analysis, thus providing a segue into the identification of the molecular function of DUF representatives. Here, we present the crystal structure of KPN_02352 from Klebsiella pneumoniae subsp. pneumoniae, a DUF1480 domain-containing protein, which was determined to be 1.75 Å resolution. Representatives of the DUF1480 family are found broadly across Enterobacterales and have been previously shown to contribute to the antibiotic response. Our structural analysis suggests that DUF1480 is comprised of a six-stranded split barrel fold featuring a small alpha helix that is positioned to cap one end of the split barrel. DUF1480 was found to be monomeric in solution, and harbors structural similarity to response regulators. The crystal structure of DUF1480 is the first experimental insight into the molecular structure of this conserved protein family, revealing several conserved features that may be functionally relevant.
RESUMO
Mycobacterium tuberculosis (Mtb) grows on host-derived cholesterol during infection. IpdAB, found in all steroid-degrading bacteria and a determinant of pathogenicity, has been implicated in the hydrolysis of the last steroid ring. Phylogenetic analyses revealed that IpdAB orthologs form a clade of CoA transferases (CoTs). In a coupled assay with a thiolase, IpdAB transformed the cholesterol catabolite (R)-2-(2-carboxyethyl)-3-methyl-6-oxocyclohex-1-ene-1-carboxyl-CoA (COCHEA-CoA) and CoASH to 4-methyl-5-oxo-octanedioyl-CoA (MOODA-CoA) and acetyl-CoA with high specificity (kcat/Km = 5.8 ± 0.8 × 104 M-1â s-1). The structure of MOODA-CoA was consistent with IpdAB hydrolyzing COCHEA-CoA to a ß-keto-thioester, a thiolase substrate. Contrary to characterized CoTs, IpdAB exhibited no activity toward small CoA thioesters. Further, IpdAB lacks the catalytic glutamate residue that is conserved in the ß-subunit of characterized CoTs and a glutamyl-CoA intermediate was not trapped during turnover. By contrast, Glu105A, conserved in the α-subunit of IpdAB, was essential for catalysis. A crystal structure of the IpdAB·COCHEA-CoA complex, solved to 1.4 Å, revealed that Glu105A is positioned to act as a catalytic base. Upon titration with COCHEA-CoA, the E105AA variant accumulated a yellow-colored species (λmax = 310 nm; Kd = 0.4 ± 0.2 µM) typical of ß-keto enolates. In the presence of D2O, IpdAB catalyzed the deuteration of COCHEA-CoA adjacent to the hydroxylation site at rates consistent with kcat Based on these data and additional IpdAB variants, we propose a retro-Claisen condensation-like mechanism for the IpdAB-mediated hydrolysis of COCHEA-CoA. This study expands the range of known reactions catalyzed by the CoT superfamily and provides mechanistic insight into an important determinant of Mtb pathogenesis.
Assuntos
Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Hidrolases/metabolismo , Mycobacterium tuberculosis/enzimologia , Tuberculose/microbiologia , Fatores de Virulência/metabolismo , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Colesterol/química , Cristalografia por Raios X , Humanos , Hidrolases/química , Hidrolases/genética , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Filogenia , Tuberculose/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genéticaRESUMO
Mycobacteria use specialized type VII (ESX) secretion systems to export proteins across their complex cell walls. Mycobacterium tuberculosis encodes five nonredundant ESX secretion systems, with ESX-1 being particularly important to disease progression. All ESX loci encode extracellular membrane-bound proteases called mycosins (MycP) that are essential to secretion and have been shown to be involved in processing of type VII-exported proteins. Here, we report the first x-ray crystallographic structure of MycP1(24-407) to 1.86 Å, defining a subtilisin-like fold with a unique N-terminal extension previously proposed to function as a propeptide for regulation of enzyme activity. The structure reveals that this N-terminal extension shows no structural similarity to previously characterized protease propeptides and instead wraps intimately around the catalytic domain where, tethered by a disulfide bond, it forms additional interactions with a unique extended loop that protrudes from the catalytic core. We also show MycP1 cleaves the ESX-1 secreted protein EspB from both M. tuberculosis and Mycobacterium smegmatis at a homologous cut site in vitro.
Assuntos
Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos , Mycobacterium smegmatis/enzimologia , Subtilisinas/química , Sequência de Aminoácidos , Domínio Catalítico , Sequência Consenso , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteólise , Homologia de Sequência de AminoácidosRESUMO
The Rcs pathway is repressed by the inner membrane protein IgaA under non-stressed conditions. This repression is hypothesized to be relieved by the binding of the outer membrane-anchored RcsF to IgaA. However, the precise mechanism by which RcsF binding triggers the signaling remains unclear. Here, we present the 1.8 Å resolution crystal structure capturing the interaction between IgaA and RcsF. Our comparative structural analysis, examining both the bound and unbound states of the periplasmic domain of IgaA (IgaAp), highlights rotational flexibility within IgaAp. Conversely, the conformation of RcsF remains unchanged upon binding. Our in vivo and in vitro studies do not support the model of a stable complex involving RcsF, IgaAp, and RcsDp. Instead, we demonstrate that the elements beyond IgaAp play a role in the interaction between IgaA and RcsD. These findings collectively allow us to propose a potential mechanism for the signaling across the inner membrane through IgaA.
Assuntos
Proteínas de Escherichia coli , Modelos Moleculares , Ligação Proteica , Transdução de Sinais , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cristalografia por Raios X , Escherichia coli/metabolismo , Escherichia coli/genética , Sítios de Ligação , Proteínas de Membrana/metabolismo , Proteínas de Membrana/químicaRESUMO
The enzymes involved in the lysine biosynthetic pathway have long been considered to be attractive targets for novel antibiotics due to the absence of this pathway in humans. Recently, a novel pyridoxal 5'-phosphate (PLP) dependent enzyme called LL-diaminopimelate aminotransferase (LL-DAP-AT) was identified in the lysine biosynthetic pathway of plants and Chlamydiae. Understanding its function and substrate recognition mechanism would be an important initial step toward designing novel antibiotics targeting LL-DAP-AT. The crystal structures of LL-DAP-AT from Arabidopsis thaliana in complex with various substrates and analogues have been solved recently. These structures revealed how L-glutamate and LL-DAP are recognized by LL-DAP-AT without significant conformational changes in the enzyme's backbone structure. This review article summarizes the recent developments in the structural characterization and the inhibitor design of LL-DAP-AT from A. thaliana. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Assuntos
Proteínas de Bactérias/metabolismo , Transaminases/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Transaminases/químicaRESUMO
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a single-stranded, enveloped RNA virus and the etiological agent of the current coronavirus disease 2019 pandemic. Efficient replication of the virus relies on the activity of nonstructural protein 1 (Nsp1), a major virulence factor shown to facilitate suppression of host gene expression through promotion of host mRNA degradation and interaction with the 40S ribosomal subunit. Here, we report the crystal structure of the globular domain of SARS-CoV-2 Nsp1, encompassing residues 13 to 127, at a resolution of 1.65 Å. Our structure features a six-stranded, capped ß-barrel motif similar to Nsp1 from SARS-CoV and reveals how variations in amino acid sequence manifest as distinct structural features. Combining our high-resolution crystal structure with existing data on the C-terminus of Nsp1 from SARS-CoV-2, we propose a model of the full-length protein. Our results provide insight into the molecular structure of a major pathogenic determinant of SARS-CoV-2.
RESUMO
The arms race among microorganisms is a key driver in the evolution of not only the weapons but also defence mechanisms. Many Gram-negative bacteria use the type six secretion system (T6SS) to deliver toxic effectors directly into neighbouring cells. Defence against effectors requires cognate immunity proteins. However, here we show immunity-independent protection mediated by envelope stress responses in Escherichia coli and Vibrio cholerae against a V. cholerae T6SS effector, TseH. We demonstrate that TseH is a PAAR-dependent species-specific effector highly potent against Aeromonas species but not against its V. cholerae immunity mutant or E. coli. A structural analysis reveals TseH is probably a NlpC/P60-family cysteine endopeptidase. We determine that two envelope stress-response pathways, Rcs and BaeSR, protect E. coli from TseH toxicity by mechanisms including capsule synthesis. The two-component system WigKR (VxrAB) is critical for protecting V. cholerae from its own T6SS despite expressing immunity genes. WigR also regulates T6SS expression, suggesting a dual role in attack and defence. This deepens our understanding of how bacteria survive T6SS attacks and suggests that defence against the T6SS represents a major selective pressure driving the evolution of species-specific effectors and protective mechanisms mediated by envelope stress responses and capsule synthesis.
Assuntos
Imunidade , Sistemas de Secreção Tipo VI/imunologia , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Imunidade/genética , Modelos Moleculares , Conformação Proteica , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulência/genéticaRESUMO
Many Gram-negative bacteria, including causative agents of dysentery, plague, and typhoid fever, rely on a type III secretion system - a multi-membrane spanning syringe-like apparatus - for their pathogenicity. The cytosolic ATPase complex of this injectisome is proposed to play an important role in energizing secretion events and substrate recognition. We present the 3.3 Å resolution cryo-EM structure of the enteropathogenic Escherichia coli ATPase EscN in complex with its central stalk EscO. The structure shows an asymmetric pore with different functional states captured in its six catalytic sites, details directly supporting a rotary catalytic mechanism analogous to that of the heterohexameric F1/V1-ATPases despite its homohexameric nature. Situated at the C-terminal opening of the EscN pore is one molecule of EscO, with primary interaction mediated through an electrostatic interface. The EscN-EscO structure provides significant atomic insights into how the ATPase contributes to type III secretion, including torque generation and binding of chaperone/substrate complexes.
Assuntos
Microscopia Crioeletrônica/métodos , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/ultraestrutura , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Estrutura Secundária de ProteínaRESUMO
The essential biosynthetic pathway to l-Lysine in bacteria and plants is an attractive target for the development of new antibiotics or herbicides because it is absent in humans, who must acquire this amino acid in their diet. Plants use a shortcut of a bacterial pathway to l-Lysine in which the pyridoxal-5'-phosphate (PLP)-dependent enzyme ll-diaminopimelate aminotransferase (LL-DAP-AT) transforms l-tetrahydrodipicolinic acid (L-THDP) directly to LL-DAP. In addition, LL-DAP-AT was recently found in Chlamydia sp., suggesting that inhibitors of this enzyme may also be effective against such organisms. In order to understand the mechanism of this enzyme and to assist in the design of inhibitors, the three-dimensional crystal structure of LL-DAP-AT was determined at 1.95 A resolution. The cDNA sequence of LL-DAP-AT from Arabidopsis thaliana (AtDAP-AT) was optimized for expression in bacteria and cloned in Escherichia coli without its leader sequence but with a C-terminal hexahistidine affinity tag to aid protein purification. The structure of AtDAP-AT was determined using the multiple-wavelength anomalous dispersion (MAD) method with a seleno-methionine derivative. AtDAP-AT is active as a homodimer with each subunit having PLP in the active site. It belongs to the family of type I fold PLP-dependent enzymes. Comparison of the active site residues of AtDAP-AT and aspartate aminotransferases revealed that the PLP binding residues in AtDAP-AT are well conserved in both enzymes. However, Glu97* and Asn309* in the active site of AtDAP-AT are not found at similar positions in aspartate aminotransferases, suggesting that specific substrate recognition may require these residues from the other monomer. A malate-bound structure of AtDAP-AT allowed LL-DAP and L-glutamate to be modelled into the active site. These initial three-dimensional structures of LL-DAP-AT provide insight into its substrate specificity and catalytic mechanism.
Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Chlamydia/enzimologia , Lisina/biossíntese , Transaminases/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Dimerização , Ácido Glutâmico/metabolismo , Lisina/química , Malatos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fosfato de Piridoxal/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Solventes , Eletricidade Estática , Especificidade por Substrato , Transaminases/metabolismoRESUMO
In the present study, embryo transfer was performed using frozen-thawed embryos to establish a SPF colony of human apolipoprotein (a) (apo(a)) transgenic rabbits. Apo(a) transgenic rabbits were kept under conventional condition and were infected with Bordetella bronchiseptica. Embryos at the morula stage were collected and stored in liquid nitrogen. After thawing, the in vitro survival rate was 84.6%, and 125 morphologically normal embryos were transferred to 6 SPF recipient rabbits. Four rabbits became pregnant and 23 live pups were born. PCR and Western blot analyses revealed that 9 of 23 pups were transgenic and expressed apo(a) protein. Microbiological tests showed all rabbits were free from infections. We succeeded in establishing a SPF colony of apo(a) transgenic rabbits. These rabbits are now maintained under a barrier system and are available for medical research.
Assuntos
Criação de Animais Domésticos/métodos , Animais Geneticamente Modificados , Apolipoproteínas A/genética , Criopreservação/veterinária , Transferência Embrionária/veterinária , Coelhos/genética , Animais , Infecções por Bordetella/prevenção & controle , Infecções por Bordetella/transmissão , Infecções por Bordetella/veterinária , Bordetella bronchiseptica/patogenicidade , Criopreservação/métodos , Feminino , Humanos , Masculino , Gravidez , Resultado da Gravidez , Reprodução , Organismos Livres de Patógenos Específicos , Taxa de SobrevidaRESUMO
We have previously reported the structures of the native holo and substrate-bound forms of LL-diaminopimelate aminotransferase from Arabidopsis thaliana (AtDAP-AT). Here, we report the crystal and molecular structures of the LL-diaminopimelate aminotransferase from Chlamydia trachomatis (CtDAP-AT) in the apo-form and the pyridoxal-5'-phosphate-bound form. The molecular structure of CtDAP-AT shows that its overall fold is essentially identical with that of AtDAP-AT except that CtDAP-AT adopts an "open" conformation as opposed to the "closed" conformation of AtDAP-AT. Although AtDAP-AT and CtDAP-AT are approximately 40% identical in their primary sequence, they have major differences in their substrate specificities; AtDAP-AT is highly specific for LL-DAP, whereas CtDAP-AT accepts a wider range of substrates. Since all of the residues involved in substrate recognition are highly conserved between AtDAP-AT and CtDAP-AT, we propose that differences in flexibility of the loops lining the active-site region between the two enzymes likely account for the differences in substrate specificity.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/enzimologia , Transaminases/química , Transaminases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Especificidade por SubstratoRESUMO
LL-Diaminopimelate aminotransferase (LL-DAP-AT), a pyridoxal phosphate (PLP)-dependent enzyme in the lysine biosynthetic pathways of plants and Chlamydia, is a potential target for the development of herbicides or antibiotics. This homodimeric enzyme converts L-tetrahydrodipicolinic acid (THDP) directly to LL-DAP using L-glutamate as the source of the amino group. Earlier, we described the 3D structures of native and malate-bound LL-DAP-AT from Arabidopsis thaliana (AtDAP-AT). Seven additional crystal structures of AtDAP-AT and its variants are reported here as part of an investigation into the mechanism of substrate recognition and catalysis. Two structures are of AtDAP-AT with reduced external aldimine analogues: N-(5'-phosphopyridoxyl)-L-glutamate (PLP-Glu) and N-(5'-phosphopyridoxyl)- LL-Diaminopimelate (PLP-DAP) bound in the active site. Surprisingly, they reveal that both L-glutamate and LL-DAP are recognized in a very similar fashion by the same sets of amino acid residues; both molecules adopt twisted V-shaped conformations. With both substrates, the alpha-carboxylates are bound in a salt bridge with Arg404, whereas the distal carboxylates are recognized via hydrogen bonds to the well-conserved side chains of Tyr37, Tyr125 and Lys129. The distal C(epsilon) amino group of LL-DAP is specifically recognized by several non-covalent interactions with residues from the other subunit (Asn309*, Tyr94*, Gly95*, and Glu97* (Amino acid designators followed by an asterisk (*) indicate that the residues originate in the other subunit of the dimer)) and by three bound water molecules. Two catalytically inactive variants of AtDAP-AT were created via site-directed mutagenesis of the active site lysine (K270N and K270Q). The structures of these variants permitted the observation of the unreduced external aldimines of PLP with L-glutamate and with LL-DAP in the active site, and revealed differences in the torsion angle about the PLP-substrate bond. Lastly, an apo-AtDAP-AT structure missing PLP revealed details of conformational changes induced by PLP binding and substrate entry into the active site.
Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfato de Piridoxal/metabolismo , Apoenzimas/química , Apoenzimas/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Lisina/biossíntese , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Estrutura Secundária de Proteína , Fosfato de Piridoxal/química , Eletricidade Estática , Especificidade por SubstratoRESUMO
An orthorhombic crystal of xylanase II from Trichoderma reesei was grown in the presence of sodium iodide. Crystal structures at atomic resolution were determined at 100 and 293 K. Protein molecules were aligned along a crystallographic twofold screw axis, forming a helically extended polymer-like chain mediated by an iodide ion. The iodide ion connected main-chain peptide groups between two adjacent molecules by an N-H...I-...H-N hydrogen-bond bridge, thus contributing to regulation of the molecular arrangement and suppression of the rigid-body motion in the crystal with high diffraction quality. The structure at 293 K showed considerable thermal motion in the loop regions connecting the beta-strands that form the active-site cleft. TLS model analysis of the thermal motion and a comparison between this structure and that at 100 K suggest that the fluctuation of these loop regions is attributable to the hinge-like movement of the beta-strands.