Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Biosci Biotechnol Biochem ; 88(2): 177-180, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38017627

RESUMO

A sugar acid dehydratase from Paraburkholderia mimosarum, potentially involved in the non-phosphorylated L-fucose pathway, was functionally characterized. A biochemical analysis revealed its unique heterodimeric structure and higher specificity toward L-fuconate than D-arabinonate, D-altronate, and L-xylonate, which differed from homomeric homologs. This unique L-fuconate dehydratase has a poor phylogenetic relationship with other functional members of the D-altronate dehydratase/galactarate dehydratase protein family.


Assuntos
Fucose , Hidroliases , Fucose/metabolismo , Filogenia , Hidroliases/genética , Bactérias/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38735624

RESUMO

During the development of teleost fish, the sole nutrient source is the egg yolk. The yolk consists mostly of proteins and lipids, with only trace amounts of carbohydrates such as glycogen and glucose. However, past evidence in some fishes showed transient increase in glucose during development, which may have supported the development of the embryos. Recently, we found in zebrafish that the yolk syncytial layer (YSL), an extraembryonic tissue surrounding the yolk, undergoes gluconeogenesis. However, in other teleost species, the knowledge on such gluconeogenic functions during early development is lacking. In this study, we used a marine fish, the grass puffer (Takifugu niphobles) and assessed possible gluconeogenic functions of their YSL, to understand the difference or shared features of gluconeogenesis between these species. A liquid chromatography (LC) / mass spectrometry (MS) analysis revealed that glucose and glycogen content significantly increased in the grass puffer during development. Subsequent real-time PCR results showed that most of the genes involved in gluconeogenesis increased in segmentation stages and/or during hatching. Among these genes, many were expressed in the YSL and liver, as shown by in situ hybridization analysis. In addition, glycogen immunostaining revealed that this carbohydrate source was accumulated in many tissues at segmentation stage but exclusively in the liver in hatched individuals. Taken together, these results suggest that developing grass puffer undergoes gluconeogenesis and glycogen synthesis during development, and that gluconeogenic activity is shared in YSL of zebrafish and grass puffer.


Assuntos
Gluconeogênese , Glucose , Glicogênio , Takifugu , Animais , Takifugu/metabolismo , Takifugu/crescimento & desenvolvimento , Takifugu/genética , Glicogênio/metabolismo , Glucose/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Embrião não Mamífero/metabolismo
3.
Biochemistry ; 62(2): 524-534, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36563174

RESUMO

2,4-Diketo-3-deoxy-l-rhamnonate (L-DKDR) hydrolase (LRA6) catalyzes the hydrolysis reaction of L-DKDR to pyruvate and l-lactate in the nonphosphorylated l-rhamnose pathway from bacteria and belongs to the fumarylacetoacetate hydrolase (FAH) superfamily. Most of the members of the FAH superfamily are involved in the microbial degradation of aromatic substances and share low sequence similarities with LRA6, by which the underlying catalytic mechanism remains unknown at the atomic level. We herein elucidated for the first time the crystal structures of LRA6 from Sphingomonas sp. without a ligand and in complex with pyruvate, in which a magnesium ion was coordinated with three acidic residues in the catalytic center. Structural, biochemical, and phylogenetic analyses suggested that LRA6 is a close but distinct subfamily of the fumarylpyruvate hydrolase (FPH) subfamily, and amino acid residues at equivalent position to 84 in LRA6 are related to different substrate specificities between them (Leu84 and Arg86 in LRA6 and FPH, respectively). Structural transition induced upon the binding of pyruvate was observed within a lid-like region, by which a glutamate-histidine dyad that is critical for catalysis was arranged sufficiently close to the ligand. Among several hydroxylpyruvates (2,4-diketo-5-hydroxycarboxylates), L-DKDR with a C6 methyl group was the best substrate for LRA6, conforming to the physiological role. Significant activity was also detected in acylpyruvate including acetylpyruvate. The structural analysis presented herein provides a more detailed understanding of the molecular evolution and physiological role of the FAH superfamily enzymes (e.g., the FAH like-enzyme involved in the mammalian l-fucose pathway).


Assuntos
Hidrolases , Ramnose , Animais , Ramnose/metabolismo , Filogenia , Ligantes , Hidrolases/química , Bactérias/metabolismo , Piruvatos , Cristalografia por Raios X , Mamíferos/metabolismo
4.
Biochem Biophys Res Commun ; 604: 14-21, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35279441

RESUMO

l-Arabinose 1-dehydrogenase (AraDH) catalyzes the NAD(P)+-dependent oxidation of l-arabinose to L-arabinono-1,4-lactone in the non-phosphorylative l-arabinose pathway, and is classified into glucose-fructose oxidoreductase and short-chain dehydrogenase/reductase (SDR). We herein report the crystal structure of a SDR-type AraDH (from Herbaspirillum huttiense) for the first time. The interactions between Asp49 and the 2'- and 3'-hydroxyl groups of NAD+ were consistent with strict specificity for NAD+. In a binding model for the substrate, Ser155 and Tyr168, highly conserved in the SDR superfamily, interacted with the C1 and/or C2 hydroxyl(s) of l-arabinose, whereas interactions between Asp107, Arg109, and Gln206 and the C2 and/or C3 hydroxyl(s) were unique to AraDH. Trp200 significantly contributed to the selectivities of the C4 hydroxyl and C6 methyl of substrates.


Assuntos
Arabinose , Redutases-Desidrogenases de Cadeia Curta , Arabinose/química , NAD/metabolismo , Oxirredutases/metabolismo , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Especificidade por Substrato
5.
Medicina (Kaunas) ; 58(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35334534

RESUMO

Background and Objectives: There have been numerous advances in spine surgery for metastatic spinal tumors, and minimally invasive spine stabilization (MISt) is becoming increasingly popular in Japan. MISt is a minimally invasive fixation procedure that temporarily stabilizes the spine, thereby reducing pain, preventing pathological fractures, and improving activities of daily living at an early stage. MISt may be useful given the recent shift toward outpatient cancer treatment. Materials and Methods: This study enrolled 51 patients with metastatic spinal tumors who underwent surgery using MISt between December 2013 and October 2020. The Spinal Instability Neoplastic Score, an assessment of spinal instability, was used to determine the indication for surgery, and the Epidural Spinal Cord Compression scale was used for additional decompression. Results: The patients comprised 34 men and 17 women, and the mean age at surgery was 68.9 years. The mean postoperative follow-up period was 20.8 months, and 35 of 51 patients (67%) had died by the last survey. The mean operative time was 159.8 min, mean blood loss was 115.7 mL, and mean time to ambulation was 3.2 days. No perioperative complications were observed, although two patients required refixation surgery. Preoperatively, 37 patients (72.5%) were classified as Frankel grade E. There were no cases of postoperative exacerbation, and six patients showed improvement of one or more Frankel grades after surgery. The median duration of patient survival was about 22.0 months. Patients with breast, prostate, renal, and thyroid cancers had a good prognosis, whereas those with gastrointestinal and head and neck cancers had a poor prognosis. Conclusions: MISt can benefit patients who are ineligible for conventional, highly invasive surgery and is also suitable because cancer treatment is increasingly performed on an outpatient basis. Furthermore, choosing the right surgery for the right patient at the right time can significantly affect life expectancy.


Assuntos
Instabilidade Articular , Compressão da Medula Espinal , Neoplasias da Coluna Vertebral , Atividades Cotidianas , Feminino , Humanos , Masculino , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/cirurgia , Neoplasias da Coluna Vertebral/cirurgia , Coluna Vertebral
6.
J Biol Chem ; 295(5): 1338-1349, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31914410

RESUMO

The genetic context in bacterial genomes and screening for potential substrates can help identify the biochemical functions of bacterial enzymes. The Gram-negative, strictly anaerobic bacterium Veillonella ratti possesses a gene cluster that appears to be related to l-fucose metabolism and contains a putative dihydrodipicolinate synthase/N-acetylneuraminate lyase protein (FucH). Here, screening of a library of 2-keto-3-deoxysugar acids with this protein and biochemical characterization of neighboring genes revealed that this gene cluster encodes enzymes in a previously unknown "route I" nonphosphorylating l-fucose pathway. Previous studies of other aldolases in the dihydrodipicolinate synthase/N-acetylneuraminate lyase protein superfamily used only limited numbers of compounds, and the approach reported here enabled elucidation of the substrate specificities and stereochemical selectivities of these aldolases and comparison of them with those of FucH. According to the aldol cleavage reaction, the aldolases were specific for (R)- and (S)-stereospecific groups at the C4 position of 2-keto-3-deoxysugar acid but had no structural specificity or preference of methyl groups at the C5 and C6 positions, respectively. This categorization corresponded to the (Re)- or (Si)-facial selectivity of the pyruvate enamine on the (glycer)aldehyde carbonyl in the aldol-condensation reaction. These properties are commonly determined by whether a serine or threonine residue is positioned at the equivalent position close to the active site(s), and site-directed mutagenesis markedly modified C4-OH preference and selective formation of a diastereomer. I propose that substrate specificity of 2-keto-3-deoxysugar acid aldolases was convergently acquired during evolution and report the discovery of another l-2-keto-3-deoxyfuconate aldolase involved in the same nonphosphorylating l-fucose pathway in Campylobacter jejuni.


Assuntos
Aldeído Liases/metabolismo , Aldeídos/metabolismo , Fucose/metabolismo , Veillonella/enzimologia , Aldeído Liases/química , Aldeído Liases/genética , Aldeídos/química , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Domínio Catalítico/genética , Desoxiaçúcares/química , Desoxiaçúcares/metabolismo , Evolução Molecular , Hidroliases/química , Hidroliases/metabolismo , Cinética , Modelos Moleculares , Família Multigênica/genética , Mutagênese Sítio-Dirigida , Mutação , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Filogenia , Especificidade por Substrato/genética , Veillonella/genética , Veillonella/metabolismo
7.
J Biol Chem ; 295(10): 3257-3268, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32005660

RESUMO

Eukaryotic cells are compartmentalized to form organelles, whose functions rely on proper phospholipid and protein transport. Here we determined the crystal structure of human VAT-1, a cytosolic soluble protein that was suggested to transfer phosphatidylserine, at 2.2 Å resolution. We found that VAT-1 transferred not only phosphatidylserine but also other acidic phospholipids between membranes in vitro Structure-based mutational analyses showed the presence of a possible lipid-binding cavity at the interface between the two subdomains, and two tyrosine residues in the flexible loops facilitated phospholipid transfer, likely by functioning as a gate to this lipid-binding cavity. We also found that a basic and hydrophobic loop with two tryptophan residues protruded from the molecule and facilitated binding to the acidic-lipid membranes, thereby achieving efficient phospholipid transfer.


Assuntos
Fosfolipídeos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Humanos , Lipossomos/química , Lipossomos/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fosfatidilserinas/metabolismo , Domínios Proteicos , Estrutura Terciária de Proteína , Triptofano/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
8.
Biochemistry ; 59(32): 2962-2973, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32697085

RESUMO

l-2-Keto-3-deoxyarabinonate (l-KDA) dehydratase (AraD) catalyzes the hydration of l-KDA to α-ketoglutaric semialdehyde in the nonphosphorylative l-arabinose pathway from bacteria and belongs to the dihydrodipicolinate synthase (DHDPS)/N-acetylneuraminate lyase (NAL) protein superfamily. All members of this superfamily, including several aldolases for l-KDA, share a common catalytic mechanism of retro-aldol fission, in which a lysine residue forms a Schiff base with the carbonyl C2 atom of the substrate, followed by proton abstraction of the substrate by a tyrosine residue as the base catalyst. Only AraD possesses a glutamine residue instead of this active site tyrosine, suggesting its involvement in catalysis. We herein determined the crystal structures of AraD from the nitrogen-fixing bacterium Azospirillum brasilense and AraD in complex with ß-hydroxypyruvate and 2-oxobutyrate, two substrate analogues, at resolutions of 1.9, 1.6, and 2.2 Å, respectively. In both of the complexed structures, the ε-nitrogen of the conserved Lys171 was covalently linked to the carbonyl C2 atom of the ligand, which was consistent with the Schiff base intermediate form, similar to other DHDPS/NAL members. A site-directed mutagenic study revealed that Glu173 and Glu200 played important roles as base catalysts, whereas Gln143 was not absolutely essential. The abstraction of one of the C3 protons of the substrate (but not the O4 hydroxyl) by Glu173 was similar to that by the (conserved) tyrosine residues in the two DHDPS/NAL members that produce α-ketoglutaric semialdehyde (d-5-keto-4-deoxygalactarate dehydratase and Δ1-pyrroline-4-hydroxy-2-carboxylate deaminase), indicating that these enzymes evolved convergently despite similarities in the overall reaction.


Assuntos
Biocatálise , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/metabolismo , Azospirillum brasilense/enzimologia , Frutose-Bifosfato Aldolase/genética , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica
9.
Mol Microbiol ; 112(1): 147-165, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30985034

RESUMO

The gene context in microorganism genomes is of considerable help for identifying potential substrates. The C785_RS13685 gene in Herbaspirillum huttiense IAM 15032 is a member of the d-altronate dehydratase protein family, and which functions as a d-arabinonate dehydratase in vitro, is clustered with genes related to putative pentose metabolism. In the present study, further biochemical characterization and gene expression analyses revealed that l-xylonate is a physiological substrate that is ultimately converted to α-ketoglutarate via so-called Route II of a non-phosphorylative pathway. Several hexonates, including d-altronate, d-idonate and l-gluconate, which are also substrates of C785_RS13685, also significantly up-regulated the gene cluster containing C785_RS13685, suggesting a possibility that pyruvate and d- or l-glycerate were ultimately produced (novel Route III). On the contrary, ACAV_RS08155 of Acidovorax avenae ATCC 19860, a homologous gene to C785_RS13685, functioned as a d-altronate dehydratase in a novel l-galactose pathway, through which l-galactonate was epimerized at the C5 position by the sequential activity of two dehydrogenases, resulting in d-altronate. Furthermore, this pathway completely overlapped with Route III of the non-phosphorylative l-fucose pathway. The 'substrate promiscuity' of d-altronate dehydratase protein(s) is significantly expanded to 'metabolic promiscuity' in the d-arabinose, sugar acid, l-fucose and l-galactose pathways.


Assuntos
Hidroliases/genética , Hidroliases/metabolismo , Sequência de Aminoácidos/genética , Arabinose/metabolismo , Clonagem Molecular/métodos , Fucose/metabolismo , Galactose/metabolismo , Genoma Bacteriano/genética , Gluconatos/metabolismo , Herbaspirillum/genética , Herbaspirillum/metabolismo , Hidroliases/fisiologia , Família Multigênica/genética , Açúcares Ácidos/metabolismo
10.
Biochem Biophys Res Commun ; 530(1): 203-208, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828286

RESUMO

L-Arabinose 1-dehydrogenase (AraDH) is responsible for the first step of the non-phosphorylative L-arabinose pathway from bacteria, and catalyzes the NAD(P)+-dependent oxidation of L-arabinose to L-arabinonolactone. This enzyme belongs to the so-called Gfo/Idh/MocA protein superfamily, but has a very poor phylogenetic relationship with other functional members. We previously reported the crystal structures of AraDH without a ligand and in complex with NADP+. To clarify the underlying catalytic mechanisms in more detail, we herein elucidated the crystal structure in complex with L-arabinose and NADP+. In addition to the previously reported five amino acid residues (Lys91, Glu147, His153, Asp169, and Asn173), His119, Trp152, and Trp231 interacted with L-arabinose, which were not found in substrate recognition by other Gfo/Idh/MocA members. Structure-based site-directed mutagenic analyses suggested that Asn173 plays an important role in catalysis, whereas Trp152, Trp231, and His119 contribute to substrate binding. The preference of NADP+ over NAD+ was significantly subjected by a pair of Ser37 and Arg38, whose manners were similar to other Gfo/Idh/MocA members.


Assuntos
Arabinose/metabolismo , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/metabolismo , NADP/metabolismo , Sequência de Aminoácidos , Arabinose/química , Azospirillum brasilense/química , Proteínas de Bactérias/química , Desidrogenases de Carboidrato/química , Cristalografia por Raios X , Modelos Moleculares , NADP/química , Conformação Proteica
11.
Biochem Biophys Res Commun ; 528(1): 21-27, 2020 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448506

RESUMO

Mutarotases catalyze the α-ß anomeric conversion of monosaccharide, and play a key role in utilizing sugar as enzymes involved in sugar metabolism have specificity for the α- or ß-anomer. In spite of the sequential similarity to l-rhamnose mutarotase protein superfamily (COG3254: RhaM), the ACAV_RS08160 gene in Acidovorax avenae ATCC 19860 (AaFucM) is located in a gene cluster related to non-phosphorylative l-fucose and l-galactose metabolism, and transcriptionally induced by these carbon sources; therefore, the physiological role remains unclear. Here, we report that AaFucM possesses mutarotation activity only toward l-fucose by saturation difference (SD) NMR experiments. Moreover, we determined the crystal structures of AaFucM in the apo form and in the l-fucose-bound form at resolutions of 2.21 and 1.75 Å, respectively. The overall structural folding was clearly similar to the RhaM members, differed from the known l-fucose mutarotase (COG4154: FucU), strongly indicating their convergent evolution. The structure-based mutational analyses suggest that Tyr18 is important for catalytic action, and that Gln87 and Trp99 are involved in the l-fucose-specific recognition.


Assuntos
Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Fucose/metabolismo , Calorimetria , Domínio Catalítico , Comamonadaceae/enzimologia , Cristalografia por Raios X , Análise Mutacional de DNA , Evolução Molecular , Fucose/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fosforilação , Relação Estrutura-Atividade
12.
Phys Chem Chem Phys ; 22(34): 19162-19171, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32812565

RESUMO

Neutron reflectivity (NR) measurements have been employed to study the interfacial structuring and composition of electroresponsive boundary layers formed by an ionic liquid (IL) lubricant at an electrified gold interface when dispersed in a polar solvent. The results reveal that both the composition and extent of the IL boundary layers intricately depend on the bulk IL concentration and the applied surface potential. At the lowest concentration (5% w/w), a preferential adsorption of the IL cation at the gold electrode is observed, which hinders the ability to electro-induce changes in the boundary layers. In contrast, at higher IL bulk concentrations (10 and 20% w/w), the NR results reveal a significantly larger concentration of the IL ions at the gold interface that exhibit significantly greater electroresponsivity, with clear changes in the layer composition and layer thickness observed for different potentials. In complementary atomic force microscopy (AFM) measurements on an electrified gold surface, such IL boundary layers are demonstrated to provide excellent friction reduction and electroactive friction (known as tribotronics). In agreement with the NR results obtained, clear concentration effects are also observed. Together such results provide valuable molecular insight into the electroactive structuring of ILs in solvent mixtures, as well as provide mechanistic understanding of their tribotronic behaviours.

13.
Phys Chem Chem Phys ; 22(48): 28191-28201, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33295339

RESUMO

The effect of water on the electroactive structuring of a tribologically relevant ionic liquid (IL) when dispersed in a polar solvent has been investigated at a gold electrode interface using neutron reflectivity (NR). For all solutions studied, the addition of small amounts of water led to clear changes in electroactive structuring of the IL at the electrode interface, which was largely determined by the bulk IL concentration. At a dilute IL concentration, the presence of water gave rise to a swollen interfacial structuring, which exhibited a greater degree of electroresponsivity with applied potential compared to an equivalent dry solution. Conversely, for a concentrated IL solution, the presence of water led to an overall thinning of the interfacial region and a crowding-like structuring, within which the composition of the inner layer IL layers varied systematically with applied potential. Complementary nanotribotronic atomic force microscopy (AFM) measurements performed for the same IL concentration, in dry and ambient conditions, show that the presence of water reduces the lubricity of the IL boundary layers. However, consistent with the observed changes in the IL layers observed by NR, reversible and systematic control of the friction coefficient with applied potential was still achievable. Combined, these measurements provide valuable insight into the implications of water on the interfacial properties of ILs at electrified interfaces, which inevitably will determine their applicability in tribotronic and electrochemical contexts.

14.
Phys Chem Chem Phys ; 22(16): 8450-8460, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32271337

RESUMO

Control of the interfacial structures of ionic liquids (ILs) at charged interfaces is important to many of their applications, including in energy storage solutions, sensors and advanced lubrication technologies utilising electric fields. In the case of the latter, there is an increasing demand for the study of non-halogenated ILs, as many fluorinated anions have been found to produce corrosive and toxic halides under tribological conditions. Here, the interfacial structuring of a series of four imidazolium ILs ([CnC1Im]) of varying alkyl chain lengths (n = 5, 6, 7, 10), with a non-halogenated borate-based anion ([BOB]), have been studied at charged interfaces using sum frequency generation (SFG) spectroscopy and neutron reflectivity (NR). For all alkyl chain lengths, the SFG spectra show that the cation imidazolium ring responds to the surface charge by modifying its orientation with respect to the surface normal. In addition, the combination of SFG spectra with electrochemical NR measurements reveals that the longest alkyl chain length (n = 10) forms a bilayer structure at all charged interfaces, independent of the ring orientation. These results demonstrate the tunability of IL interfacial layers through the use of surface charge, as well as effect of the cation alkyl chain length, and provide valuable insight into the charge compensation mechanisms of ILs.

15.
Biochem Biophys Res Commun ; 511(1): 135-140, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30773259

RESUMO

The hypothetical OCC_00372 protein from Thermococcus litoralis is a member of the ProR superfamily from hyperthermophilic archaea and exhibits unique bifunctional proline racemase/hydroxyproline 2-epimerase activity. However, the molecular mechanism of the broad substrate specificity and extreme thermostability of this enzyme (TlProR) remains unclear. Here we determined the crystal structure of TlProR at 2.7 Šresolution. Of note, a substrate proline molecule, derived from expression host Escherichia coli cells, was tightly bound in the active site of TlProR. The substrate bound structure and mutational analyses suggested that Trp241 is involved in hydroxyproline recognition by making a hydrogen bond between the indole group of Trp241 and the hydroxyl group of hydroxyproline. Additionally, Tyr171 may contribute to the thermostability by making hydrogen bonds between the hydroxyl group of Tyr171 and catalytic residues. Our structural and functional analyses provide a structural basis for understanding the molecular mechanism of substrate specificity and thermostability of ProR superfamily proteins.


Assuntos
Isomerases de Aminoácido/química , Thermococcus/enzimologia , Isomerases de Aminoácido/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Hidroxiprolina/metabolismo , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Thermococcus/química , Thermococcus/metabolismo
16.
Biochem Biophys Res Commun ; 516(1): 189-195, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31208721

RESUMO

Hydroxyprolines (Hyp) are non-standard amino acids derived from the post-translational modification of proteins by prolyl hydroxylase enzymes. Some plants and bacteria produce Hyp, and the isomers trans-3-Hydroxy-l-proline (T3LHyp) and trans-4-Hydroxy-l-proline (T4LHyp) are major components of mammalian collagen. While T4LHyp is metabolised following distinct degradative pathways in mammals and bacteria, T3LHyp metabolic pathway is conserved in bacteria, plants and mammals, and involves a T3LHyp dehydratase (T3LHypD) in the first degradation step. We report here the crystal structure of T3LHypD from the archaea Thermococcus litoralis in the free and substrate-complexed form. The model shows an "open" and a "closed" conformation depending on the presence (or absence) of the substrate in the catalytic site and allows the mapping of the residues involved in ligand recognition. Moreover, the structure highlights the presence of a water molecule interacting with the hydroxy group of the substrate and potentially involved in catalysis. The structure here reported is the first of its family to be elucidated, and represents a valid model for rationalising the substrate specificity and catalysis of T3LHyp dehydratases.


Assuntos
Proteínas Arqueais/metabolismo , Hidroliases/metabolismo , Hidroxiprolina/metabolismo , Thermococcus/enzimologia , Proteínas Arqueais/química , Domínio Catalítico , Cristalografia por Raios X , Hidroliases/química , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Thermococcus/química , Thermococcus/metabolismo
17.
Angew Chem Int Ed Engl ; 58(42): 15031-15035, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31397531

RESUMO

A pincer-iridium complex bearing a Lewis-base-free X-type alumanyl ligand has been synthesized. X-ray diffraction, NMR and IR spectroscopy, as well as XANES analysis confirmed its tetrahydrido-IrV structure and Lewis acidity at the Al center as supported by DFT calculations. The resulting complex was applied as a catalyst for the transfer dehydrogenation of cyclooctane.

18.
Biosci Biotechnol Biochem ; 82(1): 110-113, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29191113

RESUMO

The hypO gene from Sinorhizobium meliloti, located within the trans-4-hydroxy-L-proline metabolic gene cluster, was first successfully expressed in the host Pseudomonas putida. Purified HypO protein functioned as a FAD-containing cis-4-hydroxy-D-proline dehydrogenase with a homomeric structure. In contrast to other known enzymes, significant activity for D-proline was found, confirming a previously proposed potential involvement in D-proline metabolism.


Assuntos
Prolina Oxidase/genética , Sinorhizobium meliloti , Sinorhizobium/enzimologia , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/genética , Família Multigênica , Prolina Oxidase/metabolismo , Sinorhizobium/genética
19.
J Bacteriol ; 199(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28559297

RESUMO

Hydroxyprolines, such as trans-4-hydroxy-l-proline (T4LHyp), trans-3-hydroxy-l-proline (T3LHyp), and cis-3-hydroxy-l-proline (C3LHyp), are present in some proteins including collagen, plant cell wall, and several peptide antibiotics. In bacteria, genes involved in the degradation of hydroxyproline are often clustered on the genome (l-Hyp gene cluster). We recently reported that an aconitase X (AcnX)-like hypI gene from an l-Hyp gene cluster functions as a monomeric C3LHyp dehydratase (AcnXType I). However, the physiological role of C3LHyp dehydratase remained unclear. We here demonstrate that Azospirillum brasilense NBRC 102289, an aerobic nitrogen-fixing bacterium, robustly grows using not only T4LHyp and T3LHyp but also C3LHyp as the sole carbon source. The small and large subunits of the hypI gene (hypIS and hypIL, respectively) from A. brasilense NBRC 102289 are located separately from the l-Hyp gene cluster and encode a C3LHyp dehydratase with a novel heterodimeric structure (AcnXType IIa). A strain disrupted in the hypIS gene did not grow on C3LHyp, suggesting its involvement in C3LHyp metabolism. Furthermore, C3LHyp induced transcription of not only the hypI genes but also the hypK gene encoding Δ1-pyrroline-2-carboxylate reductase, which is involved in T3LHyp, d-proline, and d-lysine metabolism. On the other hand, the l-Hyp gene cluster of some other bacteria contained not only the AcnXType IIa gene but also two putative proline racemase-like genes (hypA1 and hypA2). Despite having the same active sites (a pair of Cys/Cys) as hydroxyproline 2-epimerase, which is involved in the metabolism of T4LHyp, the dominant reaction by HypA2 was clearly the dehydration of T3LHyp, a novel type of T3LHyp dehydratase that differed from the known enzyme (Cys/Thr).IMPORTANCE More than 50 years after the discovery of trans-4-hydroxy-l-proline (generally called l-hydroxyproline) degradation in aerobic bacteria, its genetic and molecular information has only recently been elucidated. l-Hydroxyproline metabolic genes are often clustered on bacterial genomes. These loci frequently contain a hypothetical gene(s), whose novel enzyme functions are related to the metabolism of trans-3-hydroxyl-proline and/or cis-3-hydroxyl-proline, a relatively rare l-hydroxyproline in nature. Several l-hydroxyproline metabolic enzymes show no sequential similarities, suggesting their emergence by convergent evolution. Furthermore, transcriptional regulation by trans-4-hydroxy-l-proline, trans-3-hydroxy-l-proline, and/or cis-3-hydroxy-l-proline significantly differs between bacteria. The results of the present study show that several l-hydroxyprolines are available for bacteria as carbon and energy sources and may contribute to the discovery of potential metabolic pathways of another hydroxyproline(s).


Assuntos
Azospirillum brasilense/enzimologia , Hidroliases/isolamento & purificação , Hidroliases/metabolismo , Hidroxiprolina/metabolismo , Azospirillum brasilense/genética , Azospirillum brasilense/crescimento & desenvolvimento , Azospirillum brasilense/metabolismo , Carbono/metabolismo , Técnicas de Inativação de Genes , Hidroxiprolina/genética , Família Multigênica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transcrição Gênica
20.
Langmuir ; 32(51): 13649-13656, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27966971

RESUMO

The molecular behavior of n-dodecane with added stearic acid at a friction interface was studied using sum frequency generation (SFG) spectroscopy and a tribometer. In the case of n-dodecane with stearic acid, under dynamic conditions, a strong peak from the symmetric stretching vibrational mode of methylene, which was not observed under static conditions, appears. However, this strong methylene peak was not observed in the case of only n-dodecane. The SFG spectrum in the C-H stretching mode region of n-dodecane-d26 with stearic acid in the dynamic condition was analogous to that in the static condition. These results indicate that the interfacial structure of stearic acid does not change under sliding condition. The n-dodecane on a stearic acid adsorption film is highly aligned. Moreover, from the sliding direction dependence of the SFG measurements, the molecular orientation of n-dodecane was deduced: n-dodecane on stearic acid adsorption films orient parallel to the sliding direction. These results have shown that the stearic acid adsorption film behaves as solid-like, which has also been mentioned in previous studies. Further, our results revealed a new function of stearic acid: the stearic acid adsorption film induces the formation of a well-defined n-dodecane interfacial structure and forces the n-dodecane molecules to orient along the sliding direction at the friction interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA