Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(2): e1009244, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539469

RESUMO

Tc toxin is an exotoxin composed of three subunits named TcA, TcB and TcC. Structural analysis revealed that TcA can form homopentamer that mediates the cellular recognition and delivery processes, thus contributing to the host tropism of Tc toxin. N-glycans and heparan sulfates have been shown to act as receptors for several Tc toxins. Here, we performed two independent genome-wide CRISPR-Cas9 screens, and have validated glycans and sulfated glycosaminoglycans (sGAGs) as Tc toxin receptors also for previously uncharacterized Tc toxins. We found that TcdA1 form Photorhabdus luminescens W14 (TcdA1W14) can recognize N-glycans via the RBD-D domain, corroborating previous findings. Knockout of N-glycan processing enzymes specifically blocks the intoxication of TcdA1W14-assembled Tc toxin. On the other hand, our results showed that sGAG biosynthesis pathway is involved in the cell surface binding of TcdA2TT01 (TcdA2 from P. luminescens TT01). Competition assays and biolayer interferometry demonstrated that the sulfation group in sGAGs is required for the binding of TcdA2TT01. Finally, based on the conserved domains of representative TcA proteins, we have identified 1,189 putative TcAs from 1,039 bacterial genomes. These TcAs are categorized into five subfamilies. Each subfamily shows a good correlation with both genetic organization of the TcA protein(s) and taxonomic origin of the genomes, suggesting these subfamilies may utilize different mechanisms for cellular recognition. Taken together, our results support the previously described two different binding modalities of Tc toxins, leading to unique host targeting properties. We also present the bioinformatics data and receptor screening strategies for TcA proteins, provide new insights into understanding host specificity and biomedical applications of Tc toxins.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/farmacologia , Glicosaminoglicanos/química , Photorhabdus/metabolismo , Polissacarídeos/química , Compostos de Sulfidrila/química , Proteínas de Bactérias/genética , Células HeLa , Humanos , Photorhabdus/efeitos dos fármacos
2.
PLoS Pathog ; 17(2): e1009102, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540421

RESUMO

Tc toxins were originally identified in entomopathogenic bacteria, which are important as biological pest control agents. Tc toxins are heteromeric exotoxins composed of three subunit types, TcA, TcB, and TcC. The C-terminal portion of the TcC protein encodes the actual toxic domain, which is translocated into host cells by an injectosome nanomachine comprising the other subunits. Currently the pathogenic roles and distribution of Tc toxins among different bacterial genera remain unclear. Here we have performed a comprehensive genome-wide analysis, and established a database that includes 1,608 identified Tc loci containing 2,528 TcC proteins in 1,421 Gram-negative and positive bacterial genomes. Our findings indicate that TcCs conform to the architecture of typical polymorphic toxins, with C-terminal hypervariable regions (HVR) encoding more than 100 different classes of putative toxic domains, most of which have not been previously recognized. Based on further analysis of Tc loci in the genomes of all Salmonella and Yersinia strains in EnteroBase, a "two-level" evolutionary dynamics scenario is proposed for TcC homologues. This scenario implies that the conserved TcC RHS core domain plays a critical role in the taxonomical specific distribution of TcC HVRs. This study provides an extensive resource for the future development of Tc toxins as valuable agrochemical tools. It furthermore implies that Tc proteins, which are encoded by a wide range of pathogens, represent an important versatile toxin superfamily with diverse pathogenic mechanisms.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Evolução Biológica , Genoma Bacteriano , Salmonella/genética , Yersinia/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/classificação , Toxinas Bacterianas/metabolismo , Células HEK293 , Células HeLa , Humanos , Salmonella/crescimento & desenvolvimento , Salmonella/patogenicidade , Yersinia/crescimento & desenvolvimento , Yersinia/patogenicidade
3.
PLoS Pathog ; 9(10): e1003644, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098116

RESUMO

The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5∶1∶1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Toxinas Bacterianas/metabolismo , Complexos Multiproteicos/metabolismo , Photorhabdus/metabolismo , Toxinas Bacterianas/genética , Burkholderia/genética , Burkholderia/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Complexos Multiproteicos/genética , Photorhabdus/genética , Pseudomonas/genética , Pseudomonas/metabolismo
4.
PLoS Pathog ; 9(3): e1003201, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555240

RESUMO

The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K(+)) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. Key homeostasis requirements monitored by KdpD/KdpE and other TCSs such as PhoP/PhoQ are critical to survival in the stressful conditions encountered by pathogens during host interactions. It follows these TCSs may therefore acquire adaptive roles in response to selective pressures associated with adopting a pathogenic lifestyle. Given the central role of K(+) in virulence, we propose that KdpD/KdpE, as a regulator of a high-affinity K(+) pump, has evolved virulence-related regulatory functions. In support of this hypothesis, we review the role of KdpD/KdpE in bacterial infection and summarize evidence that (i) KdpD/KdpE production is correlated with enhanced virulence and survival, (ii) KdpE regulates a range of virulence loci through direct promoter binding, and (iii) KdpD/KdpE regulation responds to virulence-related conditions including phagocytosis, exposure to microbicides, quorum sensing signals, and host hormones. Furthermore, antimicrobial stress, osmotic stress, and oxidative stress are associated with KdpD/KdpE activity, and the system's accessory components (which allow TCS fine-tuning or crosstalk) provide links to stress response pathways. KdpD/KdpE therefore appears to be an important adaptive TCS employed during host infection, promoting bacterial virulence and survival through mechanisms both related to and distinct from its conserved role in K(+) regulation.


Assuntos
Bactérias/patogenicidade , Proteínas de Bactérias/metabolismo , Homeostase/fisiologia , Proteínas Quinases/metabolismo , Transativadores/metabolismo , Adaptação Fisiológica , Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno , Canais de Potássio/fisiologia , Virulência/fisiologia
5.
Antimicrob Agents Chemother ; 58(2): 1100-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24295979

RESUMO

The emergence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is a growing cause for concern. These strains are more virulent than health care-associated MRSA (HA-MRSA) due to higher levels of toxin expression. In a previous study, we showed that the high-level expression of PBP2a, the alternative penicillin binding protein encoded by the mecA gene on type II staphylococcal cassette chromosome mec (SCCmec) elements, reduced toxicity by interfering with the Agr quorum sensing system. This was not seen in strains carrying the CA-MRSA-associated type IV SCCmec element. These strains express significantly lower levels of PBP2a than the other MRSA type, which may explain their relatively high toxicity. We hypothesized that as oxacillin is known to increase mecA expression levels, it may be possible to attenuate the toxicity of CA-MRSA by using this antibiotic. Subinhibitory oxacillin concentrations induced PBP2a expression, repressed Agr activity, and, as a consequence, decreased phenol-soluble modulin (PSM) secretion by CA-MRSA strains. However, consistent with other studies, oxacillin also increased the expression levels of alpha-toxin and Panton-Valentine leucocidin (PVL). The net effect of these changes on the ability to lyse diverse cell types was tested, and we found that where the PSMs and alpha-toxin are important, oxacillin reduced overall lytic activity, but where PVL is important, it increased lytic activity, demonstrating the pleiotropic effect of oxacillin on toxin expression by CA-MRSA.


Assuntos
Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Exotoxinas/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas Hemolisinas/genética , Leucocidinas/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxacilina/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/agonistas , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/biossíntese , Infecções Comunitárias Adquiridas/microbiologia , Exotoxinas/agonistas , Exotoxinas/biossíntese , Proteínas Hemolisinas/agonistas , Proteínas Hemolisinas/biossíntese , Humanos , Leucocidinas/agonistas , Leucocidinas/biossíntese , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Percepção de Quorum/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo
6.
PLoS Pathog ; 8(5): e1002692, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615559

RESUMO

The Toxin Complex (TC) is a large multi-subunit toxin first characterized in the insect pathogens Photorhabdus and Xenorhabdus, but now seen in a range of pathogens, including those of humans. These complexes comprise three protein subunits, A, B and C which in the Xenorhabdus toxin are found in a 4:1:1 stoichiometry. Some TCs have been demonstrated to exhibit oral toxicity to insects and have the potential to be developed as a pest control technology. The lack of recognisable signal sequences in the three large component proteins hinders an understanding of their mode of secretion. Nevertheless, we have shown the Photorhabdus luminescens (Pl) Tcd complex has been shown to associate with the bacteria's surface, although some strains can also release it into the surrounding milieu. The large number of tc gene homologues in Pl make study of the export process difficult and as such we have developed and validated a heterologous Escherichia coli expression model to study the release of these important toxins. In addition to this model, we have used comparative genomics between a strain that releases high levels of Tcd into the supernatant and one that retains the toxin on its surface, to identify a protein responsible for enhancing secretion and release of these toxins. This protein is a putative lipase (Pdl1) which is regulated by a small tightly linked antagonist protein (Orf53). The identification of homologues of these in other bacteria, linked to other virulence factor operons, such as type VI secretion systems, suggests that these genes represent a general and widespread mechanism for enhancing toxin release in gram negative pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Toxinas Bacterianas/metabolismo , Lipase/metabolismo , Manduca/microbiologia , Photorhabdus/patogenicidade , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Larva/microbiologia , Proteínas de Membrana/metabolismo , Photorhabdus/metabolismo , Xenorhabdus/metabolismo , Xenorhabdus/patogenicidade
7.
Commun Biol ; 6(1): 1195, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001377

RESUMO

Type VI secretion systems (T6SSs) deliver effectors into target cells. Besides structural and effector proteins, many other proteins, such as adaptors, co-effectors and accessory proteins, are involved in this process. MIX domains can assist in the delivery of T6SS effectors when encoded as a stand-alone gene or fused at the N-terminal of the effector. However, whether there are other conserved domains exhibiting similar encoding forms to MIX in T6SS remains obscure. Here, we scanned publicly available bacterial genomes and established a database which include 130,825 T6SS vgrG loci from 45,041 bacterial genomes. Based on this database, we revealed six domain families encoded within vgrG loci, which are either fused at the C-terminus of VgrG/N-terminus of T6SS toxin or encoded by an independent gene. Among them, DUF2345 was further validated and shown to be indispensable for the T6SS effector delivery and LysM was confirmed to assist the interaction between VgrG and the corresponding effector. Together, our results implied that these widely distributed domain families with similar genetic configurations may be required for the T6SS effector recruitment process.


Assuntos
Sistemas de Secreção Tipo VI , Humanos , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
8.
Front Microbiol ; 14: 1113642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213513

RESUMO

Bacillus cereus G9241 was isolated from a welder who survived a pulmonary anthrax-like disease. Strain G9241 carries two virulence plasmids, pBCX01 and pBC210, as well as an extrachromosomal prophage, pBFH_1. pBCX01 has 99.6% sequence identity to pXO1 carried by Bacillus anthracis and encodes the tripartite anthrax toxin genes and atxA, a mammalian virulence transcriptional regulator. This work looks at how the presence of pBCX01 and temperature may affect the lifestyle of B. cereus G9241 using a transcriptomic analysis and by studying spore formation, an important part of the B. anthracis lifecycle. Here we report that pBCX01 has a stronger effect on gene transcription at the mammalian infection relevant temperature of 37°C in comparison to 25°C. At 37°C, the presence of pBCX01 appears to have a negative effect on genes involved in cell metabolism, including biosynthesis of amino acids, whilst positively affecting the transcription of many transmembrane proteins. The study of spore formation showed B. cereus G9241 sporulated rapidly in comparison to the B. cereus sensu stricto type strain ATCC 14579, particularly at 37°C. The carriage of pBCX01 did not affect this phenotype suggesting that other genetic elements were driving rapid sporulation. An unexpected finding of this study was that pBFH_1 is highly expressed at 37°C in comparison to 25°C and pBFH_1 expression leads to the production of Siphoviridae-like phage particles in the supernatant of B. cereus G9241. This study provides an insight on how the extrachromosomal genetic elements in B. cereus G9241 has an influence in bacterial phenotypes.

9.
Front Microbiol ; 14: 1113562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937299

RESUMO

Bacillus cereus G9241 was isolated from a Louisiana welder suffering from an anthrax-like infection. The organism carries two transcriptional regulators that have previously been proposed to be incompatible with each other in Bacillus anthracis: the pleiotropic transcriptional regulator PlcR found in most members of the Bacillus cereus group but truncated in all B. anthracis isolates, and the anthrax toxin regulator AtxA found in all B. anthracis strains and a few B. cereus sensu stricto strains. Here we report cytotoxic and hemolytic activity of cell free B. cereus G9241 culture supernatants cultured at 25°C to various eukaryotic cells. However, this is not observed at the mammalian infection relevant temperature 37°C, behaving much like the supernatants generated by B. anthracis. Using a combination of genetic and proteomic approaches to understand this unique phenotype, we identified several PlcR-regulated toxins to be secreted highly at 25°C compared to 37°C. Furthermore, results suggest that differential expression of the protease involved in processing the PlcR quorum sensing activator molecule PapR appears to be the limiting step for the production of PlcR-regulated toxins at 37°C, giving rise to the temperature-dependent hemolytic and cytotoxic activity of the culture supernatants. This study provides an insight on how B. cereus G9241 is able to "switch" between B. cereus and B. anthracis-like phenotypes in a temperature-dependent manner, potentially accommodating the activities of both PlcR and AtxA.

10.
Infect Dis Poverty ; 11(1): 60, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655325

RESUMO

BACKGROUND: Leishmaniasis is a serious neglected tropical disease that may lead to life-threatening outcome, which species are closely related to clinical diagnosis and patient management. The current Leishmania species determination method is not appropriate for clinical application. New Leishmania species identification tool is needed using clinical samples directly without isolation and cultivation of parasites. METHODS: A probe-based allele-specific real-time PCR assay was established for Leishmania species identification between Leishmania donovani and L. infantum for visceral leishmaniasis (VL) and among L. major, L. tropica and L. donovani/L. infantum for cutaneous leishmaniasis (CL), targeting hypoxanthine-guanine phosphoribosyl transferase (HGPRT) and spermidine synthase (SPDSYN) gene with their species-specific single nucleotide polymorphisms (SNPs). The limit of detection of this assay was evaluated based on 8 repeated tests with intra-assay standard deviation < 0.5 and inter-assay coefficients of variability < 5%. The specificity of this assay was tested with DNA samples obtained from Plasmodium falciparum, Toxoplasma gondii, Brucella melitensis and Orientia tsutsugamushi. Total 42 clinical specimens were used to evaluate the ability of this assay for Leishmania species identification. The phylogenetic tree was constructed using HGPRT and SPDSYN gene fragments to validate the performance of this assay. RESULTS: This new method was able to detect 3 and 12 parasites/reaction for VL and CL respectively, and exhibited no cross-reaction with P. falciparum, T. gondii, B. melitensis, O. tsutsugamushi and non-target species of Leishmania. Twenty-two samples from VL patients were identified as L. donovani (n = 3) and L. infantum (n = 19), and 20 specimens from CL patients were identified as L. major (n = 20), providing an agreement of 100% compared with sequencing results. For further validation, 29 sequences of HGPRT fragment from nine Leishmania species and 22 sequences from VL patients were used for phylogenetic analysis, which agreed with the results of this new method. Similar results were obtained with 43 sequences of SPDSYN fragment from 18 Leishmania species and 20 sequences from CL patients. CONCLUSIONS: Our assay provides a rapid and accurate tool for Leishmania species identification which is applicable for species-adapted therapeutic schedule and patient management.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Malária Falciparum , Alelos , Humanos , Hipoxantina Fosforribosiltransferase , Leishmaniose Visceral/diagnóstico , Filogenia , Reação em Cadeia da Polimerase em Tempo Real
11.
Appl Environ Microbiol ; 77(3): 776-85, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21148694

RESUMO

Extracellular polysaccharide (EPS) is produced by diverse bacterial pathogens and fulfills assorted roles, including providing a structural matrix for biofilm formation and more specific functions in virulence, such as protection against immune defenses. We report here the first investigation of some of the genes important for biofilm formation in Photorhabdus luminescens and demonstrate the key role of the phosphomannose isomerase gene, manA, in the structure of functional EPS. Phenotypic analyses of a manA-deficient mutant showed the importance of EPS in motility, insect virulence, and biofilm formation on abiotic surfaces as well as the requirement of this gene for the use of mannose as the sole carbon source. Conversely, this defect had no apparent impact on symbiosis with the heterorhabditid nematode vector. A more detailed analysis of biofilm formation revealed that the manA mutant was able to attach to surfaces with the same efficiency as that of the wild-type strain but could not develop the more extended biofilm matrix structures. A compositional analysis of P. luminescens EPS reveals how the manA mutation has a major effect on the formation of a complete, branched EPS.


Assuntos
Biofilmes/crescimento & desenvolvimento , Manose-6-Fosfato Isomerase/metabolismo , Manose/metabolismo , Photorhabdus/enzimologia , Polissacarídeos Bacterianos/química , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Manose-6-Fosfato Isomerase/genética , Mariposas/microbiologia , Movimento , Mutação , Nematoides/microbiologia , Photorhabdus/genética , Polissacarídeos Bacterianos/metabolismo , Simbiose , Virulência
12.
Proc Natl Acad Sci U S A ; 105(41): 15967-72, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18838673

RESUMO

Current sequence databases now contain numerous whole genome sequences of pathogenic bacteria. However, many of the predicted genes lack any functional annotation. We describe an assumption-free approach, Rapid Virulence Annotation (RVA), for the high-throughput parallel screening of genomic libraries against four different taxa: insects, nematodes, amoeba, and mammalian macrophages. These hosts represent different aspects of both the vertebrate and invertebrate immune system. Here, we apply RVA to the emerging human pathogen Photorhabdus asymbiotica using "gain of toxicity" assays of recombinant Escherichia coli clones. We describe a wealth of potential virulence loci and attribute biological function to several putative genomic islands, which may then be further characterized using conventional molecular techniques. The application of RVA to other pathogen genomes promises to ascribe biological function to otherwise uncharacterized virulence genes.


Assuntos
Biologia Computacional/métodos , Biblioteca Genômica , Invertebrados/microbiologia , Fatores de Virulência/genética , Animais , Genoma Bacteriano , Ilhas Genômicas , Mamíferos/microbiologia , Dados de Sequência Molecular , Photorhabdus/genética , Photorhabdus/patogenicidade
13.
PLoS Negl Trop Dis ; 15(12): e0010025, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34919557

RESUMO

Pneumocystis pneumonia (PCP) and pulmonary toxoplasmosis (PT) are caused by Pneumocystis jirovecii and Toxoplasma gondii. The clinical symptoms and imaging of PCP and PT are indistinguishable. A duplex qPCR was developed to differentiate between these two pathogens. In testing 92 clinical samples to validate the performance of this method for P. jirovecii detection, it identified 31 positive samples for P. jirovecii infection, consistent with clinical diagnosis. Among the remainder of the 61 clinical samples with suspected PCP, yet showing as negative by the conventional PCR diagnosis approach, 6 of them proved positive using our new assay. Our new approach also produced similar results in identification of T. gondii infections, giving a result of 2 positive and 20 negative in clinical samples. An investigation was undertaken on the prevalence of P. jirovecii and T. gondii infections using 113 samples from lung infection patients. 9% (10/113) were shown to be positive with infections of P. jirovecii, 2% with T. gondii (2/113) and 5% (6/113) were co-infected with both pathogens. Although this duplex qPCR can detect individual P. jirovecii and T. gondii infection, and co-infection of both pathogens, further large-scale investigations are needed to validate its performance, especially in T. gondii detection. Our assay provides a rapid and accurate tool for PCP and PT diagnosis in immunocompromised population and clinical surveillance of these infections in patients with no immune defects.


Assuntos
Pneumopatias/microbiologia , Pneumopatias/parasitologia , Pneumocystis carinii/isolamento & purificação , Pneumonia por Pneumocystis/microbiologia , Reação em Cadeia da Polimerase/métodos , Toxoplasma/isolamento & purificação , Toxoplasmose/parasitologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Hospedeiro Imunocomprometido , Lactente , Pulmão/microbiologia , Pulmão/parasitologia , Pneumopatias/diagnóstico , Masculino , Pessoa de Meia-Idade , Pneumocystis carinii/genética , Pneumonia por Pneumocystis/diagnóstico , Toxoplasma/genética , Toxoplasmose/diagnóstico , Adulto Jovem
14.
Curr Biol ; 31(14): 3199-3206.e4, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34033748

RESUMO

Marine bacterial viruses (bacteriophages) are abundant biological entities that are vital for shaping microbial diversity, impacting marine ecosystem function, and driving host evolution.1-3 The marine roseobacter clade (MRC) is a ubiquitous group of heterotrophic bacteria4,5 that are important in the elemental cycling of various nitrogen, sulfur, carbon, and phosphorus compounds.6-10 Bacteriophages infecting MRC (roseophages) have thus attracted much attention and more than 30 roseophages have been isolated,11-13 the majority of which belong to the N4-like group (Podoviridae family) or the Chi-like group (Siphoviridae family), although ssDNA-containing roseophages are also known.14 In our attempts to isolate lytic roseophages, we obtained two new phages (DSS3_VP1 and DSS3_PM1) infecting the model MRC strain Ruegeria pomeroyi DSS-3. Here, we show that not only do these phages have unusual substitution of deoxythymidine with deoxyuridine (dU) in their DNA, but they are also phylogenetically distinct from any currently known double-stranded DNA bacteriophages, supporting the establishment of a novel family ("Naomiviridae"). These dU-containing phages possess DNA that is resistant to the commonly used library preparation method for metagenome sequencing, which may have caused significant underestimation of their presence in the environment. Nevertheless, our analysis of Tara Ocean metagenome datasets suggests that these unusual bacteriophages are of global importance and more diverse than other well-known bacteriophages, e.g., the Podoviridae in the oceans, pointing to an overlooked role for these novel phages in the environment.


Assuntos
Bacteriófagos , DNA Viral/química , Genoma Viral , Roseobacter , Bacteriófagos/classificação , Desoxiuridina/química , Ecossistema , Filogenia , Roseobacter/virologia , Timidina/química
15.
BMC Microbiol ; 10: 141, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20462430

RESUMO

BACKGROUND: Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. RESULTS: A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28 degrees C) and human (37 degrees C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. CONCLUSIONS: We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of EPS properties. Despite its abundance and conservation in the genus, we find no evidence for a role of Pam in either virulence or symbiosis.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Photorhabdus/fisiologia , Polissacarídeos Bacterianos/metabolismo , Adesinas Bacterianas/genética , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Eletroforese em Gel Bidimensional , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Lepidópteros/microbiologia , Nematoides/microbiologia , Photorhabdus/crescimento & desenvolvimento , Photorhabdus/isolamento & purificação , Photorhabdus/patogenicidade , Proteoma/análise , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Simbiose , Temperatura , Virulência
16.
Front Microbiol ; 11: 548800, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101227

RESUMO

Temperature plays an important role in bacteria-host interactions and can be a determining factor for host switching. In this study we sought to investigate the reasons behind growth temperature restriction in the entomopathogenic enterobacterium Photorhabdus. Photorhabdus has a complex dual symbiotic and pathogenic life cycle. The genus consists of 19 species but only one subgroup, previously all classed together as Photorhabdus asymbiotica, have been shown to cause human disease. These clinical isolates necessarily need to be able to grow at 37°C, whilst the remaining species are largely restricted to growth temperatures below 34°C and are therefore unable to infect mammalian hosts. Here, we have isolated spontaneous mutant lines of Photorhabdus laumondii DJC that were able to grow up to 36-37°C. Following whole genome sequencing of 29 of these mutants we identified a single gene, encoding a protein with a RecG-like helicase domain that for the majority of isolates contained single nucleotide polymorphisms. Importantly, provision of the wild-type allele of this gene in trans restored the temperature restriction, confirming the mutations are recessive, and the dominant effect of the protein product of this gene. The gene appears to be part of a short three cistron operon, which we have termed the Temperature Restricting Locus (TRL). Transcription reporter strains revealed that this operon is induced upon the switch from 30 to 36°C, leading to replication arrest of the bacteria. TRL is absent from all of the human pathogenic species so far examined, although its presence is not uniform in different strains of the Photorhabdus luminescens subgroup. In a wider context, the presence of this gene is not limited to Photorhabdus, being found in phylogenetically diverse proteobacteria. We therefore suggest that this system may play a more fundamental role in temperature restriction in diverse species, relating to as yet cryptic aspects of their ecological niches and life cycle requirements.

17.
Front Cell Infect Microbiol ; 10: 581639, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117735

RESUMO

Leishmaniasis is still a serious neglected tropical disease that may cause death in infected individuals. At present, the clinical diagnosis and treatment monitoring still rely on parasitological culture and microscopy that needs experienced technicians. The low sensitivity and inconvenience of microscopic examination could cause misdiagnosis and relapse of leishmaniasis. There is an urgent need for developing a sensitive and easily operated diagnostic method for the diagnosis and disease management of leishmaniasis. Thus, a quantitative real-time PCR (qPCR) based on the conversed regions of kinetoplast minicircle DNA (mkDNA) of Leishmania spp. was developed to detect different species of Leishmania. The designed mkDNA-based qPCR was able to detect as low as one copy of Leishmania mkDNA or DNA from single parasite. It also detected Pan-Leishmania protozoa including Leishmania donovani, Leishmania infantum and Leishmania major without cross-reaction with other pathogen DNAs available in our lab. This method was clinically applied to quantitatively detect skin lesion samples from 20 cutaneous leishmaniasis (CL) and bone marrow and/or PBMC samples from 30 current and cured visceral leishmaniasis (VL) patients, and blood samples from 11 patients with other infections and 5 normal donors as well. Total 20 skin lesion samples from current CL patients and 20 bone marrow and/or PBMC samples from current VL patients were all detected as positive with qPCR without cross-reaction with samples from patients with malaria, brucellosis and dengue or normal donors. Two VL patients with parasite converted to microscopically negative after treatment were detected positive with qPCR. The patients with bigger skin lesion in CL and higher level of immunoglobulin or splenomegaly in VL, had the higher parasite load detected by qPCR. The parasite load was significantly reduced after treatment. In conclusion, the mkDNA-based qPCR assay that we developed in this study can be used not only for diagnosis of both cutaneous and visceral leishmaniasis with high sensitivity and specificity, but also for evaluating the severity and treatment efficacy of this disease, presenting a rapid and accurate tool for clinical surveillance, treatment monitoring and the end point determination of leishmaniasis.


Assuntos
DNA de Cinetoplasto , Leucócitos Mononucleares , DNA de Cinetoplasto/genética , DNA de Protozoário/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Resultado do Tratamento
18.
BMC Genomics ; 10: 302, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19583835

RESUMO

BACKGROUND: The Gram-negative bacterium Photorhabdus asymbiotica (Pa) has been recovered from human infections in both North America and Australia. Recently, Pa has been shown to have a nematode vector that can also infect insects, like its sister species the insect pathogen P. luminescens (Pl). To understand the relationship between pathogenicity to insects and humans in Photorhabdus we have sequenced the complete genome of Pa strain ATCC43949 from North America. This strain (formerly referred to as Xenorhabdus luminescens strain 2) was isolated in 1977 from the blood of an 80 year old female patient with endocarditis, in Maryland, USA. Here we compare the complete genome of Pa ATCC43949 with that of the previously sequenced insect pathogen P. luminescens strain TT01 which was isolated from its entomopathogenic nematode vector collected from soil in Trinidad and Tobago. RESULTS: We found that the human pathogen Pa had a smaller genome (5,064,808 bp) than that of the insect pathogen Pl (5,688,987 bp) but that each pathogen carries approximately one megabase of DNA that is unique to each strain. The reduced size of the Pa genome is associated with a smaller diversity in insecticidal genes such as those encoding the Toxin complexes (Tc's), Makes caterpillars floppy (Mcf) toxins and the Photorhabdus Virulence Cassettes (PVCs). The Pa genome, however, also shows the addition of a plasmid related to pMT1 from Yersinia pestis and several novel pathogenicity islands including a novel Type Three Secretion System (TTSS) encoding island. Together these data suggest that Pa may show virulence against man via the acquisition of the pMT1-like plasmid and specific effectors, such as SopB, that promote its persistence inside human macrophages. Interestingly the loss of insecticidal genes in Pa is not reflected by a loss of pathogenicity towards insects. CONCLUSION: Our results suggest that North American isolates of Pa have acquired virulence against man via the acquisition of a plasmid and specific virulence factors with similarity to those shown to play roles in pathogenicity against humans in other bacteria.


Assuntos
Hibridização Genômica Comparativa , Genoma Bacteriano , Photorhabdus/genética , Photorhabdus/patogenicidade , Animais , Linhagem Celular , Doenças Transmissíveis Emergentes/microbiologia , DNA Bacteriano/genética , Infecções por Enterobacteriaceae/microbiologia , Ilhas Genômicas , Genômica , Humanos , Camundongos , Mariposas/microbiologia , América do Norte , Photorhabdus/isolamento & purificação , Plasmídeos , Análise de Sequência de DNA , Especificidade da Espécie , Virulência
19.
Appl Environ Microbiol ; 75(13): 4627-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429564

RESUMO

We have evaluated Photorhabdus insect-related protein (Pir) from Photorhabdus asymbiotica against dengue vectors. PirAB shows larvicidal activity against both Aedes aegypti and Aedes albopictus larvae but did not affect the Mesocyclops thermocyclopoides predator. PirAB expressed the strongest toxicity compared to PirA, PirB, or the mixture of PirA plus PirB. Whether the presence of an enterobacterial repetitive intergenic consensus sequence in PirAB, but not in PirA, PirB, or the mixture of PirA plus PirB, has any impact on biological control efficacy needs further investigation.


Assuntos
Aedes/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Vetores de Doenças , Inseticidas/farmacologia , Photorhabdus/química , Animais , Copépodes/efeitos dos fármacos , Dengue/prevenção & controle , Ordem dos Genes , Genes Bacterianos , Larva/efeitos dos fármacos , Análise de Sobrevida
20.
Elife ; 82019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31526474

RESUMO

Photorhabdus is a highly effective insect pathogen and symbiont of insecticidal nematodes. To exert its potent insecticidal effects, it elaborates a myriad of toxins and small molecule effectors. Among these, the Photorhabdus Virulence Cassettes (PVCs) represent an elegant self-contained delivery mechanism for diverse protein toxins. Importantly, these self-contained nanosyringes overcome host cell membrane barriers, and act independently, at a distance from the bacteria itself. In this study, we demonstrate that Pnf, a PVC needle complex associated toxin, is a Rho-GTPase, which acts via deamidation and transglutamination to disrupt the cytoskeleton. TEM and Western blots have shown a physical association between Pnf and its cognate PVC delivery mechanism. We demonstrate that for Pnf to exert its effect, translocation across the cell membrane is absolutely essential.


Assuntos
Toxinas Bacterianas/metabolismo , Células Epiteliais/metabolismo , Photorhabdus/metabolismo , Fatores de Virulência/metabolismo , Células HeLa , Humanos , Transporte Proteico , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA