Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nucleic Acids Res ; 49(7): 4066-4084, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33721027

RESUMO

RNA helicases play important roles in diverse aspects of RNA metabolism through their functions in remodelling ribonucleoprotein complexes (RNPs), such as pre-ribosomes. Here, we show that the DEAD box helicase Dbp3 is required for efficient processing of the U18 and U24 intron-encoded snoRNAs and 2'-O-methylation of various sites within the 25S ribosomal RNA (rRNA) sequence. Furthermore, numerous box C/D snoRNPs accumulate on pre-ribosomes in the absence of Dbp3. Many snoRNAs guiding Dbp3-dependent rRNA modifications have overlapping pre-rRNA basepairing sites and therefore form mutually exclusive interactions with pre-ribosomes. Analysis of the distribution of these snoRNAs between pre-ribosome-associated and 'free' pools demonstrated that many are almost exclusively associated with pre-ribosomal complexes. Our data suggest that retention of such snoRNPs on pre-ribosomes when Dbp3 is lacking may impede rRNA 2'-O-methylation by reducing the recycling efficiency of snoRNPs and by inhibiting snoRNP access to proximal target sites. The observation of substoichiometric rRNA modification at adjacent sites suggests that the snoRNPs guiding such modifications likely interact stochastically rather than hierarchically with their pre-rRNA target sites. Together, our data provide new insights into the dynamics of snoRNPs on pre-ribosomal complexes and the remodelling events occurring during the early stages of ribosome assembly.


Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Escherichia coli , Metilação , Precursores de RNA/metabolismo , Leveduras/enzimologia
2.
Nucleic Acids Res ; 45(8): 4796-4809, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28082392

RESUMO

Two proteins with PIN endonuclease domains, yUtp24(Fcf1)/hUTP24 and yUtp23/hUTP23 are essential for early pre-ribosomal (r)RNA cleavages at sites A0, A1/1 and A2/2a in yeast and humans. The yUtp24/hUTP24 PIN endonuclease is proposed to cleave at sites A1/1 and A2/2a, but the enzyme cleaving at site A0 is not known. Yeast yUtp23 contains a degenerate, non-essential PIN domain and functions together with the snR30 snoRNA, while human hUTP23 is associated with U17, the human snR30 counterpart. Using in vivo RNA-protein crosslinking and gel shift experiments, we reveal that yUtp23/hUTP23 makes direct contacts with expansion sequence 6 (ES6) in the 18S rRNA sequence and that yUtp23 interacts with the 3΄ half of the snR30 snoRNA. Protein-protein interaction studies further demonstrated that yeast yUtp23 and human hUTP23 directly interact with the H/ACA snoRNP protein yNhp2/hNHP2, the RNA helicase yRok1/hROK1(DDX52), the ribosome biogenesis factor yRrp7/hRRP7 and yUtp24/hUTP24. yUtp23/hUTP23 could therefore be central to the coordinated integration and release of ES6 binding factors and likely plays a pivotal role in remodeling this pre-rRNA region in both yeast and humans. Finally, studies using RNAi-rescue systems in human cells revealed that intact PIN domain and Zinc finger motifs in human hUTP23 are essential for 18S rRNA maturation.


Assuntos
Proteínas Nucleares/biossíntese , Conformação de Ácido Nucleico , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos/genética , Mapas de Interação de Proteínas/genética , Precursores de RNA/genética , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , RNA Nucleolar Pequeno/biossíntese , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , Ribonucleoproteínas Nucleolares Pequenas/biossíntese , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribossomos/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 44(11): 5399-409, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27034467

RESUMO

During ribosomal RNA (rRNA) maturation, cleavages at defined sites separate the mature rRNAs from spacer regions, but the identities of several enzymes required for 18S rRNA release remain unknown. PilT N-terminus (PIN) domain proteins are frequently endonucleases and the PIN domain protein Utp24 is essential for early cleavages at three pre-rRNA sites in yeast (A0, A1 and A2) and humans (A0, 1 and 2a). In yeast, A1 is cleaved prior to A2 and both cleavages require base-pairing by the U3 snoRNA to the central pseudoknot elements of the 18S rRNA. We found that yeast Utp24 UV-crosslinked in vivo to U3 and the pseudoknot, placing Utp24 close to cleavage at site A1. Yeast and human Utp24 proteins exhibited in vitro endonuclease activity on an RNA substrate containing yeast site A2. Moreover, an intact PIN domain in human UTP24 was required for accurate cleavages at sites 1 and 2a in vivo, whereas mutation of another potential site 2a endonuclease, RCL1, did not affect 18S production. We propose that Utp24 cleaves sites A1/1 and A2/2a in yeast and human cells.

4.
Nucleic Acids Res ; 43(1): 553-64, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25477391

RESUMO

Translation fidelity and efficiency require multiple ribosomal (r)RNA modifications that are mostly mediated by small nucleolar (sno)RNPs during ribosome production. Overlapping basepairing of snoRNAs with pre-rRNAs often necessitates sequential and efficient association and dissociation of the snoRNPs, however, how such hierarchy is established has remained unknown so far. Here, we identify several late-acting snoRNAs that bind pre-40S particles in human cells and show that their association and function in pre-40S complexes is regulated by the RNA helicase DDX21. We map DDX21 crosslinking sites on pre-rRNAs and show their overlap with the basepairing sites of the affected snoRNAs. While DDX21 activity is required for recruitment of the late-acting snoRNAs SNORD56 and SNORD68, earlier snoRNAs are not affected by DDX21 depletion. Together, these observations provide an understanding of the timing and ordered hierarchy of snoRNP action in pre-40S maturation and reveal a novel mode of regulation of snoRNP function by an RNA helicase in human cells.


Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Células HEK293 , Humanos , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , tRNA Metiltransferases/metabolismo
5.
RNA ; 20(4): 540-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24550520

RESUMO

During eukaryotic ribosome biogenesis, three of the mature ribosomal (r)RNAs are released from a single precursor transcript (pre-rRNA) by an ordered series of endonucleolytic cleavages and exonucleolytic processing steps. Production of the 18S rRNA requires the removal of the 5' external transcribed spacer (5'ETS) by endonucleolytic cleavages at sites A0 and A1/site 1. In metazoans, an additional cleavage in the 5'ETS, at site A', upstream of A0, has also been reported. Here, we have investigated how A' processing is coordinated with assembly of the early preribosomal complex. We find that only the tUTP (UTP-A) complex is critical for A' cleavage, while components of the bUTP (UTP-B) and U3 snoRNP are important, but not essential, for efficient processing at this site. All other factors involved in the early stages of 18S rRNA processing that were tested here function downstream from this processing step. Interestingly, we show that the RNA surveillance factors XRN2 and MTR4 are also involved in A' cleavage in humans. A' cleavage is largely bypassed when XRN2 is depleted, and we also discover that A' cleavage is not always the initial processing event in all cell types. Together, our data suggest that A' cleavage is not a prerequisite for downstream pre-rRNA processing steps and may, in fact, represent a quality control step for initial pre-rRNA transcripts. Furthermore, we show that components of the RNA surveillance machinery, including the exosome and TRAMP complexes, also play key roles in the recycling of excised spacer fragments and degradation of aberrant pre-rRNAs in human cells.


Assuntos
Exorribonucleases/metabolismo , RNA Helicases/metabolismo , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , Subunidades Ribossômicas Menores/metabolismo , Northern Blotting , Exorribonucleases/genética , Exossomos/metabolismo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , RNA Helicases/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Ribossômico/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo
6.
Biochem Soc Trans ; 44(4): 1086-90, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27528756

RESUMO

Ribosomes are abundant, large RNA-protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease.


Assuntos
Doença/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Ribonucleoproteínas/genética , Ribossomos/genética , Transdução de Sinais/genética , Animais , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribossomos/química , Ribossomos/metabolismo
7.
Nucleic Acids Res ; 42(16): 10698-710, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25159613

RESUMO

The RNA component of signal recognition particle (SRP) is transcribed by RNA polymerase III, and most steps in SRP biogenesis occur in the nucleolus. Here, we examine processing and quality control of the yeast SRP RNA (scR1). In common with other pol III transcripts, scR1 terminates in a U-tract, and mature scR1 retains a U4-5 sequence at its 3' end. In cells lacking the exonuclease Rex1, scR1 terminates in a longer U5-6 tail that presumably represents the primary transcript. The 3' U-tract of scR1 is protected from aberrant processing by the La homologue, Lhp1 and overexpressed Lhp1 apparently competes with both the RNA surveillance system and SRP assembly factors. Unexpectedly, the TRAMP and exosome nuclear RNA surveillance complexes are also implicated in protecting the 3' end of scR1, which accumulates in the nucleolus of cells lacking the activities of these complexes. Misassembled scR1 has a primary degradation pathway in which Rrp6 acts early, followed by TRAMP-stimulated exonuclease degradation by the exosome. We conclude that the RNA surveillance machinery has key roles in both SRP biogenesis and quality control of the RNA, potentially facilitating the decision between these alternative fates.


Assuntos
Núcleo Celular/metabolismo , Processamento de Terminações 3' de RNA , RNA Fúngico/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Nucléolo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Estabilidade de RNA , RNA Fúngico/química , RNA Citoplasmático Pequeno/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
RNA ; 16(12): 2341-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20962039

RESUMO

Archaeal and eukaryotic box C/D RNPs catalyze the 2'-O-methylation of ribosomal RNA, a modification that is essential for the correct folding and function of the ribosome. Each archaeal RNP contains three core proteins--L7Ae, Nop5, and fibrillarin (methyltransferase)--and a box C/D sRNA. Base-pairing between the sRNA guide region and the rRNA directs target site selection with the C/D and related C'/D' motifs functioning as protein binding sites. Recent structural analysis of in vitro assembled archaeal complexes has produced two divergent models of box C/D sRNP structure. In one model, the complex is proposed to be monomeric, while the other suggests a dimeric sRNP. The position of the RNA in the RNP is significantly different in each model. We have used UV-cross-linking to characterize protein-RNA contacts in the in vitro assembled Pyrococcus furiosus box C/D sRNP. The P. furiosus sRNP components assemble into complexes that are the expected size of di-sRNPs. Analysis of UV-induced protein-RNA cross-links revealed a novel interaction between the ALFR motif, in the Nop domain of Nop5, and the guide/spacer regions of the sRNA. We show that the ALFR motif and the spacer sequence adjacent to box C or C' are important for box C/D sRNP assembly in vitro. These data therefore reveal new RNA-protein contacts in the box C/D sRNP and suggest a role for Nop5 in substrate binding and/or release.


Assuntos
RNA Arqueal/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Sequência de Bases , Proteínas Cromossômicas não Histona/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Eficiência , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , RNA Arqueal/química , RNA Nucleolar Pequeno/química , Pequeno RNA não Traduzido
10.
PLoS Pathog ; 6(6): e1000961, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20585567

RESUMO

The nucleolus is a multifunctional structure within the nucleus of eukaryotic cells and is the primary site of ribosome biogenesis. Almost all viruses target and disrupt the nucleolus--a feature exclusive to this pathogen group. Here, using a combination of bio-imaging, genetic and biochemical analyses, we demonstrate that the enteropathogenic E. coli (EPEC) effector protein EspF specifically targets the nucleolus and disrupts a subset of nucleolar factors. Driven by a defined N-terminal nucleolar targeting domain, EspF causes the complete loss from the nucleolus of nucleolin, the most abundant nucleolar protein. We also show that other bacterial species disrupt the nucleolus, dependent on their ability to deliver effector proteins into the host cell. Moreover, we uncover a novel regulatory mechanism whereby nucleolar targeting by EspF is strictly controlled by EPEC's manipulation of host mitochondria. Collectively, this work reveals that the nucleolus may be a common feature of bacterial pathogenesis and demonstrates that a bacterial pathogen has evolved a highly sophisticated mechanism to enable spatio-temporal control over its virulence proteins.


Assuntos
Proteínas de Transporte/metabolismo , Nucléolo Celular/fisiologia , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/metabolismo , Mitocôndrias/microbiologia , Mitocôndrias/patologia , Sequência de Aminoácidos , Western Blotting , Proteínas de Transporte/genética , DNA Bacteriano/genética , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Imunofluorescência , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Reação em Cadeia da Polimerase , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Nucleolina
11.
Biochem Soc Trans ; 40(4): 850-5, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22817747

RESUMO

Most RNAs in eukaryotic cells are produced as precursors that undergo processing at the 3' and/or 5' end to generate the mature transcript. In addition, many transcripts are degraded not only as part of normal recycling, but also when recognized as aberrant by the RNA surveillance machinery. The exosome, a conserved multiprotein complex containing two nucleases, is involved in both the 3' processing and the turnover of many RNAs in the cell. A series of factors, including the TRAMP (Trf4-Air2-Mtr4 polyadenylation) complex, Mpp6 and Rrp47, help to define the targets to be processed and/or degraded and assist in exosome function. The majority of the data on the exosome and RNA maturation/decay have been derived from work performed in the yeast Saccharomyces cerevisiae. In the present paper, we provide an overview of the exosome and its role in RNA processing/degradation and discuss important new insights into exosome composition and function in human cells.


Assuntos
Exossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Exossomos/genética , Humanos , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Cell Rep ; 41(5): 111571, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323262

RESUMO

The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/genética , Nucléolo Celular/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
13.
Proc Natl Acad Sci U S A ; 105(25): 8655-60, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18559850

RESUMO

Recently, it has been reported that there is a differential subcellular distribution of components of the minor U12-dependent and major U2-dependent spliceosome, and further that the minor spliceosome functions in the cytoplasm. To study the subcellular localization of the snRNA components of both the major and minor spliceosomes, we performed in situ hybridizations with mouse tissues and human cells. In both cases, all spliceosomal snRNAs were nearly exclusively detected in the nucleus, and the minor U11 and U12 snRNAs were further shown to colocalize with U4 and U2, respectively, in human cells. Additionally, we examined the distribution of several spliceosomal snRNAs and proteins in nuclear and cytoplasmic fractions isolated from human cells. These studies revealed an identical subcellular distribution of components of both the U12- and U2-dependent spliceosomes. Thus, our data, combined with several earlier publications, establish that, like the major spliceosome, components of the U12-dependent spliceosome are localized predominantly in the nucleus.


Assuntos
Núcleo Celular/metabolismo , RNA Nuclear Pequeno/análise , Spliceossomos/metabolismo , Animais , Células HeLa , Humanos , Hibridização In Situ , Camundongos , Microscopia de Fluorescência , Precursores de RNA/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/metabolismo
14.
Nat Commun ; 12(1): 6153, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686656

RESUMO

Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit.


Assuntos
RNA Helicases DEAD-box/metabolismo , Chaperonas Moleculares/metabolismo , RNA Nucleolar Pequeno/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Pareamento de Bases , RNA Helicases DEAD-box/genética , Chaperonas Moleculares/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biogênese de Organelas , Dobramento de RNA , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
15.
Mol Cell Biol ; 27(20): 7018-27, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17709390

RESUMO

Box C/D snoRNPs, factors essential for ribosome biogenesis, are proposed to be assembled in the nucleoplasm before localizing to the nucleolus. However, recent work demonstrated the involvement of nuclear export factors in this process, suggesting that export may take place. Here we show that there are distinct distributions of U8 pre-snoRNAs and pre-snoRNP complexes in HeLa cell nuclear and cytoplasmic extracts. We observed differential association of nuclear export (PHAX, CRM1, and Ran) factors with complexes in the two extracts, consistent with nucleocytoplasmic transport. Furthermore, we show that the U8 pre-snoRNA in one of the cytoplasmic complexes contains an m3G cap and is associated with the nuclear import factor Snurportin1. Using RNA interference, we show that loss of either PHAX or Snurportin1 results in the incorrect localization of the U8 snoRNA. Our data therefore show that nuclear export and import factors are directly involved in U8 box C/D snoRNP biogenesis. The distinct distribution of U8 pre-snoRNP complexes between the two cellular compartments together with the association of both nuclear import and export factors with the precursor complex suggests that the mammalian U8 snoRNP is exported during biogenesis.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Animais , Sequência de Bases , Fracionamento Celular , Núcleo Celular/química , Núcleo Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Interferência de RNA , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética
16.
Mol Biol Cell ; 17(7): 3221-31, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16687569

RESUMO

Cajal bodies (CBs) have been implicated in the nuclear phase of the biogenesis of spliceosomal U small nuclear ribonucleoproteins (U snRNPs). Here, we have investigated the distribution of the CB marker protein coilin, U snRNPs, and proteins present in C/D box small nucleolar (sno)RNPs in cells depleted of hTGS1, SMN, or PHAX. Knockdown of any of these three proteins by RNAi interferes with U snRNP maturation before the reentry of U snRNA Sm cores into the nucleus. Strikingly, CBs are lost in the absence of hTGS1, SMN, or PHAX and coilin is dispersed in the nucleoplasm into numerous small foci. This indicates that the integrity of canonical CBs is dependent on ongoing U snRNP biogenesis. Spliceosomal U snRNPs show no detectable concentration in nuclear foci and do not colocalize with coilin in cells lacking hTGS1, SMN, or PHAX. In contrast, C/D box snoRNP components concentrate into nuclear foci that partially colocalize with coilin after inhibition of U snRNP maturation. We demonstrate by siRNA-mediated depletion that coilin is required for the condensation of U snRNPs, but not C/D box snoRNP components, into nucleoplasmic foci, and also for merging these factors into canonical CBs. Altogether, our data suggest that CBs have a modular structure with distinct domains for spliceosomal U snRNPs and snoRNPs.


Assuntos
Corpos Enovelados/metabolismo , Corpos Enovelados/ultraestrutura , Proteínas Nucleares/análise , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/biossíntese , Núcleo Celular/química , Núcleo Celular/ultraestrutura , Corpos Enovelados/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Células HeLa , Humanos , Metilação , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Mutação , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inibidores , Proteínas de Transporte Nucleocitoplasmático/genética , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U4-U6/análise , Proteínas do Complexo SMN , Spliceossomos/metabolismo , Spliceossomos/ultraestrutura
17.
ACS Appl Mater Interfaces ; 11(2): 1821-1828, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30582789

RESUMO

Fabrication of detection elements with ultrahigh surface area is essential for improving the sensitivity of analyte detection. Here, we report a direct patterning technique to fabricate three-dimensional CeO2 nanoelectrode arrays for biosensor application over relatively large areas. The fabrication approach, which employs nanoimprint lithography and a CeO2 nanoparticle-based ink, enables the direct, high-throughput patterning of nanostructures and is scalable, integrable, and of low cost. With the convenience of sequential imprinting, multilayered woodpile nanostructures with prescribed numbers of layers were achieved in a "stacked-up" architecture and were successfully fabricated over large areas. To demonstrate application as a biosensor, an enzymatic glucose sensor was developed. The sensitivity of glucose sensors can be enhanced simply by increasing the number of layers, which multiplies surface area while maintaining a constant footprint. The four-layer woodpile nanostructure of CeO2 glucose sensor exhibited enhanced sensitivity (42.8 µA mM-1 cm-2) and good selectivity. This direct imprinting strategy for three-dimensional sensing architectures is potentially extendable to other electroactive materials and other sensing applications.


Assuntos
Técnicas Biossensoriais/métodos , Cério/química , Técnicas Eletroquímicas/métodos , Glucose Oxidase/química , Glucose/análise , Nanopartículas/química
18.
Mol Cell Biol ; 22(23): 8342-52, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12417735

RESUMO

The 5' stem-loop of the U4 snRNA and the box C/D motif of the box C/D snoRNAs can both be folded into a similar stem-internal loop-stem structure that binds the 15.5K protein. The homologous proteins NOP56 and NOP58 and 61K (hPrp31) associate with the box C/D snoRNPs and the U4/U6 snRNP, respectively. This raises the intriguing question of how the two homologous RNP complexes specifically assemble onto similar RNAs. Here we investigate the requirements for the specific binding of the individual snoRNP proteins to the U14 box C/D snoRNPs in vitro. This revealed that the binding of 15.5K to the box C/D motif is essential for the association of the remaining snoRNP-associated proteins, namely, NOP56, NOP58, fibrillarin, and the nucleoplasmic proteins TIP48 and TIP49. Stem II of the box C/D motif, in contrast to the U4 5' stem-loop, is highly conserved, and we show that this sequence is responsible for the binding of NOP56, NOP58, fibrillarin, TIP48, and TIP49, but not of 15.5K, to the snoRNA. Indeed, the sequence of stem II was essential for nucleolar localization of U14 snoRNA microinjected into HeLa cells. Thus, the conserved sequence of stem II determines the specific assembly of the box C/D snoRNP.


Assuntos
Nucléolo Celular/metabolismo , Conformação de Ácido Nucleico , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Células HeLa , Humanos , Substâncias Macromoleculares , Microinjeções , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/genética
19.
Mol Cell Biol ; 24(19): 8600-10, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15367679

RESUMO

In the nucleolus the U3 snoRNA is recruited to the 80S pre-rRNA processing complex in the dense fibrillar component (DFC). The U3 snoRNA is found throughout the nucleolus and has been proposed to move with the preribosomes to the granular component (GC). In contrast, the localization of other RNAs, such as the U8 snoRNA, is restricted to the DFC. Here we show that the incorporation of the U3 snoRNA into the 80S processing complex is not dependent on pre-rRNA base pairing sequences but requires the B/C motif, a U3-specific protein-binding element. We also show that the binding of Mpp10 to the 80S U3 complex is dependent on sequences within the U3 snoRNA that base pair with the pre-rRNA adjacent to the initial cleavage site. Furthermore, mutations that inhibit 80S complex formation and/or the association of Mpp10 result in retention of the U3 snoRNA in the DFC. From this we propose that the GC localization of the U3 snoRNA is a direct result of its active involvement in the initial steps of ribosome biogenesis.


Assuntos
Nucléolo Celular/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Ribossomos/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Análise de Sequência de RNA
20.
Cell Rep ; 5(1): 237-47, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24120868

RESUMO

Several proto-oncogenes and tumor suppressors regulate the production of ribosomes. Ribosome biogenesis is a major consumer of cellular energy, and defects result in p53 activation via repression of mouse double minute 2 (MDM2) homolog by the ribosomal proteins RPL5 and RPL11. Here, we report that RPL5 and RPL11 regulate p53 from the context of a ribosomal subcomplex, the 5S ribonucleoprotein particle (RNP). We provide evidence that the third component of this complex, the 5S rRNA, is critical for p53 regulation. In addition, we show that the 5S RNP is essential for the activation of p53 by p14(ARF), a protein that is activated by oncogene overexpression. Our data show that the abundance of the 5S RNP, and therefore p53 levels, is determined by factors regulating 5S complex formation and ribosome integration, including the tumor suppressor PICT1. The 5S RNP therefore emerges as the critical coordinator of signaling pathways that couple cell proliferation with ribosome production.


Assuntos
Nucléolo Celular/metabolismo , RNA Ribossômico 5S/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Células HEK293 , Homeostase , Humanos , Camundongos , RNA Ribossômico 5S/química , RNA Ribossômico 5S/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA