RESUMO
AIMS/HYPOTHESIS: We determined whether empagliflozin altered renal sympathetic nerve activity (RSNA) and baroreflexes in a diabetes model in conscious rabbits. METHODS: Diabetes was induced by alloxan, and RSNA, mean arterial pressure (MAP) and heart rate were measured before and after 1 week of treatment with empagliflozin, insulin, the diuretic acetazolamide or the ACE inhibitor perindopril, or no treatment, in conscious rabbits. RESULTS: Four weeks after alloxan administration, blood glucose was threefold and MAP 9% higher than non-diabetic controls (p < 0.05). One week of treatment with empagliflozin produced a stable fall in blood glucose (-43%) and increased water intake (+49%) but did not change RSNA, MAP or heart rate compared with untreated diabetic rabbits. The maximum RSNA to hypotension was augmented by 75% (p < 0.01) in diabetic rabbits but the heart rate baroreflex was unaltered. Empagliflozin and acetazolamide reduced the augmentation of the RSNA baroreflex (p < 0.05) to be similar to the non-diabetic group. Noradrenaline (norepinephrine) spillover was similar in untreated diabetic and non-diabetic rabbits but twofold greater in empagliflozin- and acetazolamide-treated rabbits (p < 0.05). CONCLUSIONS/INTERPRETATION: As empagliflozin can restore diabetes-induced augmented sympathetic reflexes, this may be beneficial in diabetic patients. A similar action of the diuretic acetazolamide suggests that the mechanism may involve increased sodium and water excretion. Graphical abstract.
Assuntos
Compostos Benzidrílicos/uso terapêutico , Glucosídeos/uso terapêutico , Animais , Barorreflexo/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Perindopril/farmacologia , Coelhos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismoRESUMO
Chronic kidney disease (CKD) is associated with greater sympathetic nerve activity but it is unclear if this is a kidney-specific response or due to generalized stimulation of sympathetic nervous system activity. To determine this, we used a rabbit model of CKD in which quantitative comparisons with control rabbits could be made of kidney sympathetic nerve activity and whole-body norepinephrine spillover. Rabbits either had surgery to lesion 5/6th of the cortex of one kidney by electro-lesioning and two weeks later removal of the contralateral kidney, or sham lesioning and sham nephrectomy. After three weeks, the blood pressure was statistically significantly 20% higher in conscious rabbits with CKD compared to rabbits with a sham operation, but their heart rate was similar. Strikingly, kidney nerve activity was 37% greater than in controls, with greater burst height and frequency. Total norepinephrine spillover was statistically significantly lower by 34%, and kidney baroreflex curves were shifted to the right in rabbits with CKD. Plasma creatinine and urine output were elevated by 38% and 131%, respectively, and the glomerular filtration rate was 37% lower than in sham-operated animals (all statistically significant). Kidney gene expression of fibronectin, transforming growth factor-ß, monocyte chemotactic protein1, Nox4 and Nox5 was two- to eight-fold greater in rabbits with CKD than in control rabbits. Overall, the glomerular layer lesioning model in conscious rabbits produced a moderate, stable degree of CKD characterized by elevated blood pressure and increased kidney sympathetic nerve activity. Thus, our findings, together with that of a reduction in total norepinephrine spillover, suggest that kidney denervation, rather than generalized sympatholytic treatments, may represent a preferable management for CKD associated hypertension.
Assuntos
Insuficiência Renal Crônica , Animais , Barorreflexo , Pressão Sanguínea , Frequência Cardíaca , Rim , Coelhos , Sistema Nervoso SimpáticoRESUMO
Oxidative stress is a consequence of up-regulation of pro-oxidant enzyme-induced reactive oxygen species (ROS) production and concomitant depletion of antioxidants. Elevated levels of ROS act as an intermediate and are the common denominator for various diseases including diabetes-associated macro-/micro-vascular complications and hypertension. A range of enzymes are capable of generating ROS, but the pro-oxidant enzyme family, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), are the only enzymes known to be solely dedicated to ROS generation in the vascular tissues, kidney, aortas and eyes. While there is convincing evidence for a role of NOX1 in vascular and eye disease and for NOX4 in renal injury, the role of NOX5 in disease is less clear. Although NOX5 is highly up-regulated in humans in disease, it is absent in rodents. Thus, so far it has not been possible to study NOX5 in traditional mouse or rat models of disease. In the present review, we summarize and critically analyse the emerging evidence for a pathophysiological role of NOX5 in disease including the expression, regulation and molecular and cellular mechanisms which have been demonstrated to be involved in NOX5 activation.
Assuntos
Proteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Doenças Vasculares/enzimologia , Animais , Endotélio Vascular/enzimologia , Humanos , Proteínas de Membrana/genética , Camundongos , NADPH Oxidase 5 , NADPH Oxidases/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares/genéticaRESUMO
Despite advances in treatment, atherosclerotic cardiovascular disease remains the leading cause of death in patients with diabetes. Even when risk factors are mitigated, the disease progresses, and thus, newer targets need to be identified that directly inhibit the underlying pathobiology of atherosclerosis in diabetes. A single-cell sequencing approach was used to distinguish the proatherogenic transcriptional profile in aortic cells in diabetes using a streptozotocin-induced diabetic Apoe-/- mouse model. Human carotid endarterectomy specimens from individuals with and without diabetes were also evaluated via immunohistochemical analysis. Further mechanistic studies were performed in human aortic endothelial cells (HAECs) and human THP-1-derived macrophages. We then performed a preclinical study using an activator protein-1 (AP-1) inhibitor in a diabetic Apoe-/- mouse model. Single-cell RNA sequencing analysis identified the AP-1 complex as a novel target in diabetes-associated atherosclerosis. AP-1 levels were elevated in carotid endarterectomy specimens from individuals with diabetes compared with those without diabetes. AP-1 was validated as a mechanosensitive transcription factor via immunofluorescence staining for regional heterogeneity of endothelial cells of the aortic region exposed to turbulent blood flow and by performing microfluidics experiments in HAECs. AP-1 inhibition with T-5224 blunted endothelial cell activation as assessed by a monocyte adhesion assay and expression of genes relevant to endothelial function. Furthermore, AP-1 inhibition attenuated foam cell formation. Critically, treatment with T-5224 attenuated atherosclerosis development in diabetic Apoe-/- mice. This study has identified the AP-1 complex as a novel target, the inhibition of which treats the underlying pathobiology of atherosclerosis in diabetes.
Assuntos
Aterosclerose , Diabetes Mellitus Experimental , Análise de Célula Única , Fator de Transcrição AP-1 , Animais , Aterosclerose/metabolismo , Aterosclerose/genética , Humanos , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicações , Masculino , Células Endoteliais/metabolismo , Análise de Sequência de RNARESUMO
Epidemiologic data suggest that the prevalence of hypertension in patients with diabetes mellitus is â¼1.5-2.0 times greater than in matched non-diabetic patients. This co-existent disease burden exacerbates cardiac and vascular injury, leading to structural and functional changes to the myocardium, impaired cardiac function and heart failure. Oxidative stress and persistent low-grade inflammation underlie both conditions, and are identified as major contributors to pathological cardiac remodelling. There is an urgent need for effective therapies that specifically target oxidative stress and inflammation to protect against cardiac remodelling. Animal models are a valuable tool for testing emerging therapeutics, however, there is a notable lack of appropriate animal models of co-morbid diabetes and hypertension. In this study, we describe a novel preclinical mouse model combining diabetes and hypertension to investigate cardiac and vascular pathology of co-morbid disease. Type 1 diabetes was induced in spontaneously hypertensive, 8-week old, male Schlager (BPH/2) mice via 5 consecutive, daily injections of streptozotocin (55 mg/kg in citrate buffer; i.p.). Non-diabetic mice received citrate buffer only. After 10 weeks of diabetes induction, cardiac function was assessed by echocardiography prior to post-mortem evaluation of cardiomyocyte hypertrophy, interstitial fibrosis and inflammation by histology, RT-PCR and flow cytometry. We focussed on the oxidative and inflammatory stress pathways that contribute to cardiovascular remodelling. In particular, we demonstrate that markers of inflammation (monocyte chemoattractant protein; MCP-1), oxidative stress (urinary 8-isoprostanes) and fibrosis (connective tissue growth factor; CTGF) are significantly increased, whilst diastolic dysfunction, as indicated by prolonged isovolumic relaxation time (IVRT), is elevated in this diabetic and hypertensive mouse model. In summary, this pre-clinical mouse model provides researchers with a tool to test therapeutic strategies unique to co-morbid diabetes and hypertension, thereby facilitating the emergence of novel therapeutics to combat the cardiovascular consequences of these debilitating co-morbidities.
Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Hipertensão , Masculino , Camundongos , Animais , Remodelação Ventricular , Miocárdio/metabolismo , Hipertensão/patologia , Modelos Animais de Doenças , Estresse Oxidativo , Fibrose , Inflamação/patologia , Morbidade , Citratos/farmacologia , Cardiomiopatias Diabéticas/patologia , Diabetes Mellitus/metabolismoRESUMO
PURPOSE OF REVIEW: There is increasing evidence that endothelin receptor blockade and, in particular, ET(A) receptor blockade not only confers protection against proteinuric renal disease in diabetes but also confers vasculoprotection. RECENT FINDINGS: Recent clinical trials using ET(A) receptor blockade in treating proteinuria and chronic kidney disease as well as atherosclerosis show great promise; however, adverse effects are still problematic. SUMMARY: Endothelin receptor blockade is associated with a significant attenuation of proteinuria and these effects are mediated in part via inhibition of inflammatory and oxidative stress related pathways as well profibrotic pathways. The addition of ET(A) receptor blockade to currently established therapies such as angiotensin-converting enzyme inhibitors or angiotensin receptor blockers may result in additional or synergistic renoprotection and vasculoprotection in hypertension and, in particular, in the context of diabetes.
Assuntos
Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Antagonistas dos Receptores de Endotelina , Endotelinas/metabolismo , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doença Crônica , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Proteinúria/tratamento farmacológico , Proteinúria/metabolismo , Receptores de Endotelina/metabolismoRESUMO
Atherosclerosis and its complications are major causes of cardiovascular morbidity and death. Apart from risk factors such as hypercholesterolemia and inflammation, the causal molecular mechanisms are unknown. One proposed causal mechanism involves elevated levels of reactive oxygen species (ROS). Indeed, early expression of the ROS forming NADPH oxidase type 5 (Nox5) in vascular endothelial cells correlates with atherosclerosis and aortic aneurysm. Here we test the pro-atherogenic Nox5 hypothesis using mouse models. Because Nox5 is missing from the mouse genome, a knock-in mouse model expressing human Nox5 in its physiological location of endothelial cells (eNOX5ki/ki) was tested as a possible new humanised mouse atherosclerosis model. However, whether just on a high cholesterol diet or by crossing in aortic atherosclerosis-prone ApoE-/- mice with and without induction of diabetes, Nox5 neither induced on its own nor aggravated aortic atherosclerosis. Surprisingly, however, diabetic ApoE-/- x eNOX5ki/ki mice developed aortic aneurysms more than twice as often correlating with lower vascular collagens, as assessed by trichrome staining, without changes in inflammatory gene expression, suggesting that endothelial Nox5 directly affects extracellular matrix remodelling associated with aneurysm formation in diabetes. Thus Nox5-derived reactive oxygen species are not a new independent mechanism of atherosclerosis but may enhance the frequency of abdominal aortic aneurysms in the context of diabetes. Together with similar clinical findings, our preclinical target validation opens up a first-in-class mechanism-based approach to treat or even prevent abdominal aortic aneurysms.
Assuntos
Aneurisma da Aorta Abdominal , Aterosclerose , Diabetes Mellitus , NADPH Oxidase 5 , Animais , Aterosclerose/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Camundongos , Camundongos Knockout para ApoE , NADPH Oxidase 5/metabolismo , Oxigênio , Espécies Reativas de Oxigênio/metabolismoRESUMO
[Figure: see text].
Assuntos
Modelos Animais de Doenças , Rim/fisiopatologia , Reflexo/fisiologia , Insuficiência Renal Crônica/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Pressão Sanguínea/fisiologia , Quimiocina CCL2/genética , Denervação/métodos , Fibronectinas/genética , Expressão Gênica , Humanos , Rim/inervação , Rim/metabolismo , Masculino , NADPH Oxidases/genética , Norepinefrina/sangue , Norepinefrina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , CoelhosRESUMO
[Figure: see text].
Assuntos
Pressão Sanguínea/genética , Rim/metabolismo , MicroRNAs/genética , Transcriptoma , Animais , Pressão Sanguínea/fisiologia , Fibrose/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Inflamação/genética , Rim/patologia , Rim/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , RNA-Seq/métodos , Renina/genética , Renina/metabolismoRESUMO
[This corrects the article DOI: 10.3389/fphys.2019.01395.].
RESUMO
To determine the effect of irbesartan treatment on resting levels and arterial baroreflex control of cardiac sympathetic nerve activity (CSNA) in heart failure (HF), we studied conscious normal sheep and sheep with HF induced by rapid ventricular pacing for 8-10 wk (n = 7 per group). In HF, there is a large increase in CSNA that is detrimental to outcome. The causes of this increase in CSNA and the effect of angiotensin receptor blockers on CSNA in HF are unclear. CSNA, arterial blood pressure, heart rate (HR), and arterial baroreflex curves were recorded during a resting period and after 90 min of irbesartan infusion (12 mg.kg(-1).h(-1) iv). This dose of irbesartan abolished the pressor response to intravenous ANG II infusion but caused only a slight decrease in the pressor response to centrally administered ANG II. In HF, there was a large increase in CSNA (from 44 +/- 3 to 87 +/- 3 bursts/100 heartbeats). Irbesartan reduced arterial pressure in the normal and HF groups, but the usual baroreflex-mediated increases in CSNA and HR were prevented. This resulted from a significant leftward shift in the CSNA and HR baroreflex curves in both groups. Irbesartan also decreased the sensitivity of the arterial baroreflex control of CSNA. Short-term treatment with an angiotensin receptor blocker, at a dose that abolished the response to circulating, but not central, ANG II, prevented the reflex increase in CSNA in response to the drug-induced fall in arterial pressure.
Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Compostos de Bifenilo/farmacologia , Insuficiência Cardíaca/fisiopatologia , Coração/inervação , Sistema Nervoso Simpático/fisiologia , Tetrazóis/farmacologia , Animais , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Artérias Carótidas/fisiologia , Artérias Carótidas/transplante , Ecocardiografia , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Irbesartana , Ovinos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologiaRESUMO
Overactivity of the sympathetic nervous system and high blood pressure are implicated in the development and progression of chronic kidney disease (CKD) and independently predict cardiovascular events in end-stage renal disease. To assess the role of renal nerves, we determined whether renal denervation (RDN) altered the hypertension and sympathoexcitation associated with a rabbit model of CKD. The model involves glomerular layer lesioning and uninephrectomy, resulting in renal function reduced by one-third and diuresis. After 3-week CKD, blood pressure was 13±2 mm Hg higher than at baseline (P<0.001), and compared with sham control rabbits, renal sympathetic nerve activity was 1.2±0.5 normalized units greater (P=0.01). The depressor response to ganglion blockade was also +8.0±3 mm Hg greater, but total norepinephrine spillover was 8.7±3.7 ng/min lower (both P<0.05). RDN CKD rabbits only increased blood pressure by 8.0±1.5 mm Hg. Renal sympathetic activity, the response to ganglion blockade and diuresis were similar to sham denervated rabbits (non-CKD). CKD rabbits had intact renal sympathetic baroreflex gain and range, as well as normal sympathetic responses to airjet stress. However, hypoxia-induced sympathoexcitation was reduced by -9±0.4 normalized units. RDN did not alter the sympathetic response to hypoxia or airjet stress. CKD increased oxidative stress markers Nox5 and MCP-1 (monocyte chemoattractant protein-1) in the kidney, but RDN had no effect on these measures. Thus, RDN is an effective treatment for hypertension in this model of CKD without further impairing renal function or altering the normal sympathetic reflex responses to various environmental stimuli.
Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Rim/inervação , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal/fisiopatologia , Animais , Barorreflexo/fisiologia , Denervação , Modelos Animais de Doenças , Rim/fisiopatologia , Masculino , Coelhos , SimpatectomiaRESUMO
It is well established that diabetes is the major cause of chronic kidney disease worldwide. Both hyperglycemia, and more recently, advanced glycation endproducts, have been shown to play critical roles in the development of kidney disease. Moreover, the renin-angiotensin system along with growth factors and cytokines have also been shown to contribute to the onset and progression of diabetic kidney disease; however, the role of lipids in this context is poorly characterized. The current study aimed to compare the effect of 20 weeks of streptozotocin-induced diabetes or western diet feeding on kidney disease in two different mouse strains, C57BL/6 mice and hyperlipidemic apolipoprotein (apo) E knockout (KO) mice. Mice were fed a chow diet (control), a western diet (21% fat, 0.15% cholesterol) or were induced with streptozotocin-diabetes (55 mg/kg/day for 5 days) then fed a chow diet and followed for 20 weeks. The induction of diabetes was associated with a 3-fold elevation in glycated hemoglobin and an increase in kidney to body weight ratio regardless of strain (p < 0.0001). ApoE deficiency significantly increased plasma cholesterol and triglyceride levels and feeding of a western diet exacerbated these effects. Despite this, urinary albumin excretion (UAE) was elevated in diabetic mice to a similar extent in both strains (p < 0.0001) but no effect was seen with a western diet in either strain. Diabetes was also associated with extracellular matrix accumulation in both strains, and western diet feeding to a lesser extent in apoE KO mice. Consistent with this, an increase in renal mRNA expression of the fibrotic marker, fibronectin, was observed in diabetic C57BL/6 mice (p < 0.0001). In summary, these studies demonstrate disparate effects of diabetes and hyperlipidemia on kidney injury, with features of the diabetic milieu other than lipids suggested to play a more prominent role in driving renal pathology.
RESUMO
BACKGROUND: The sodium glucose co-transporter 2 (SGLT2) is primarily located within S1 of the renal proximal tubule being responsible for approximately 90% of glucose re-uptake in the kidney. Inhibition of SGLT2 is an exciting new pharmacological approach for the reduction of blood glucose in type 2 diabetic patients via inhibition of tubular glucose reabsorption. In addition to lowering glucose, this group of drugs has shown significant cardiovascular and renal protective effects. CONCLUSION: This review aims to outline the current state of preclinical research and clinical trials for different SGLT2 inhibitors and outline some of the proposed mechanisms of action, including possible effects on sympathetic nerve activity, which may contribute to the unexpected beneficial cardiovascular and reno-protective effects of this class of compounds.
Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Nefropatias , Inibidores do Transportador 2 de Sódio-Glicose , Glicemia , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes , Nefropatias/complicações , Nefropatias/prevenção & controle , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêuticoRESUMO
Patients with diabetic hypertensive nephropathy have accelerated disease progression. Diabetes and hypertension have both been associated with changes in renal catecholamines and reactive oxygen species. With a specific focus on renal catecholamines and oxidative stress we examined a combined model of hypertension and diabetes using normotensive BPN/3J and hypertensive BPH/2J Schlager mice. Induction of diabetes (5 × 55 mg/kg streptozotocin i.p.) did not change the hypertensive status of BPH/2J mice (telemetric 24 h avg. MAP, non-diabetic 131 ± 2 vs. diabetic 129 ± 1 mmHg, n.s at 9 weeks of study). Diabetes-associated albuminuria was higher in BPH/2J vs. diabetic BPN/3J (1205 + 196/-169 versus 496 + 67/-59 µg/24 h, p = 0.008). HPLC measurement of renal cortical norepinephrine and dopamine showed significantly greater levels in hypertensive mice whilst diabetes was associated with significantly lower catecholamine levels. Diabetic BPH/2J also had greater renal catecholamine levels than diabetic BPN/3J (diabetic: norepinephrine BPN/3J 40 ± 4, BPH/2J 91 ± 5, p = 0.010; dopamine: BPN/3J 2 ± 1; BPH/2J 3 ± 1 ng/mg total protein, p < 0.001 after 10 weeks of study). Diabetic BPH/2J showed greater cortical tubular immunostaining for monoamine oxidase A and cortical mitochondrial hydrogen peroxide formation was greater in both diabetic and non-diabetic BPH/2J. While cytosolic catalase activity was greater in non-diabetic BPH/2J it was significantly lower in diabetic BPH/2J (cytosolic: BPH/2J 127 ± 12 vs. 63 ± 6 nmol/min/ml, p < 0.001). We conclude that greater levels of renal norepinephrine and dopamine associated with hypertension, together with diabetes-associated compromised anti-oxidant systems, contribute to increased renal oxidative stress in diabetes and hypertension. Elevations in renal cortical catecholamines and reactive oxygen species have important therapeutic implications for hypertensive diabetic patients.
RESUMO
The increasing burden of heart failure globally can be partly attributed to the increased prevalence of diabetes, and the subsequent development of a distinct form of heart failure known as diabetic cardiomyopathy. Despite this, effective treatment options have remained elusive, due partly to the lack of an experimental model that adequately mimics human disease. In the current study, we combined three consecutive daily injections of low-dose streptozotocin with high-fat diet, in order to recapitulate the long-term complications of diabetes, with a specific focus on the diabetic heart. At 26 weeks of diabetes, several metabolic changes were observed including elevated blood glucose, glycated haemoglobin, plasma insulin and plasma C-peptide. Further analysis of organs commonly affected by diabetes revealed diabetic nephropathy, underlined by renal functional and structural abnormalities, as well as progressive liver damage. In addition, this protocol led to robust left ventricular diastolic dysfunction at 26 weeks with preserved systolic function, a key characteristic of patients with type 2 diabetes-induced cardiomyopathy. These observations corresponded with cardiac structural changes, namely an increase in myocardial fibrosis, as well as activation of several cardiac signalling pathways previously implicated in disease progression. It is hoped that development of an appropriate model will help to understand some the pathophysiological mechanisms underlying the accelerated progression of diabetic complications, leading ultimately to more efficacious treatment options.
RESUMO
Endoplasmic reticulum (ER) stress contributes to progression of diabetic nephropathy, which promotes end-stage renal failure in diabetic patients. This study was undertaken to investigate the actions of tempol and ramipril, pharmacological agents that target the consequences of NADPH oxidase, on diabetic nephropathy in a rat model of type 1 diabetes, with an emphasis on markers of ER stress. Male Sprague-Dawley rats were injected intravenously with a single bolus of streptozotocin (55mg/kg) to induce type 1 diabetes. An additional age-matched group of rats was administered with citrate vehicle as controls. After 4 weeks of untreated diabetes, rats received tempol (1.5mM/kg/day subcutaneously, n=8), ramipril (1mg/kg/day in drinking water, n=8) or remained untreated for an additional 4 weeks (n=7). After 8 weeks of diabetes in total, kidneys were collected for histological analysis, gene expression and protein abundance. Tempol and ramipril blunted diabetes-induced upregulation of NADPH oxidase isoforms (Nox4, Nox2, p47phox), accompanied by an amelioration of diabetes-induced glomerular injury (podocin, nephrin, Kim-1), tubulo-interstitial fibrosis (TGFß1, TGFß-R2, pSMAD3, α-SMA) and pro-inflammatory cytokines (TNFα, MCP-1, ANX-A1, FPR2) expression. In addition, the diabetes-induced renal ER stress, evidenced by increased expression of GRP-78 chaperone and stress-associated markers ATF4, TRB3, as well as XBP1s, phospho-p38 mitogen-activated protein kinase (MAPK) and 3-nitrotyrosination, were all attenuated by tempol and ramipril. These observations suggest that antioxidant approaches that blunt NADPH upregulation may attenuate diabetic nephropathy, at least in part by negatively regulating ER stress and inflammation, and hence ameliorating kidney damage.
Assuntos
Materiais Biomiméticos/farmacologia , Óxidos N-Cíclicos/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , NADPH Oxidases/metabolismo , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Materiais Biomiméticos/uso terapêutico , Óxidos N-Cíclicos/uso terapêutico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Fibrose , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ramipril/farmacologia , Ratos , Ratos Sprague-Dawley , Marcadores de SpinRESUMO
Urotensin II (UII) is a peptide that was originally isolated and characterized in fish. Interest in its effects in mammals increased with the identification of its receptor, G-protein coupled receptor 14, and its localization in humans. UII and its receptor have a wide distribution, including brain and spinal cord as well as heart, kidney and liver, implying that UII has important physiological actions. Recent studies suggest that UII may play an important role in the central nervous system. In conscious sheep, intracerebroventricular administration of UII induced large, prolonged increases in plasma epinephrine, adrenocorticotropic hormone, cardiac output and arterial pressure. Potent chronotropic and inotropic actions accompanied this, as well as peripheral vasodilatation. Administered intravenously, UII is an extremely potent vasoconstrictor in anesthetized monkeys, but reduces pressure in conscious and anesthetized rats, and causes a transient increase in conscious sheep, however vasomotor responses vary depending on species and vessel type. UII is elevated in conditions such as essential hypertension and heart failure suggesting a role in pathology. The results of studies with UII to date, together with its possible role in disease, emphasize the importance of examining the central and peripheral roles of UII in more detail.
Assuntos
Fenômenos Fisiológicos Cardiovasculares , Circulação Cerebrovascular/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Urotensinas/fisiologia , Animais , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Humanos , Urotensinas/farmacologiaRESUMO
OBJECTIVE/RATIONALE: Both the renin-angiotensin system (RAS) and the receptor for advanced glycation end products (RAGE) potentiate diabetes-associated atherosclerosis (DAA). We assessed the effectiveness of concomitant RAS and RAGE inhibition on DAA. METHODS: Diabetic (5 × 55 mg/kg streptozotocin daily) and non-diabetic male RAGE/apolipoprotein E double knockout (RAGE/apoE DKO) mice were treated with quinapril (30 mg/kg/day) for 20 weeks. At the end of the study aortic plaques were assessed. RESULTS: Diabetic RAGE/apoE DKO showed significantly less plaque area than diabetic apoE KO mice. Plaque deposition was almost abolished in quinapril treated diabetic RAGE/apoE DKOs, with significant attenuation of vascular collagen deposition, nitrotyrosine staining, and reduced macrophage infiltration. Expression of the advanced glycation end product receptor 3 (galectin 3) was also significantly reduced. CONCLUSION: Concomitant inhibition of RAS and RAGE signalling almost completely inhibited the development of experimental DAA. A dual therapeutic approach may be a superior strategy for the treatment of diabetic macrovascular disease..