Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Cell Sci ; 129(12): 2407-15, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27160682

RESUMO

Regulation of protein synthesis is crucial for cells to maintain viability and to prevent unscheduled proliferation that could lead to tumorigenesis. Exposure to stress results in stalling of translation, with many translation initiation factors, ribosomal subunits and mRNAs being sequestered into stress granules or P bodies. This allows the re-programming of the translation machinery. Many aspects of translation are regulated by post-translational modification. Several proteomic screens have identified translation initiation factors as targets for sumoylation, although in many cases the role of this modification has not been determined. We show here that eIF4A2 is modified by SUMO, with sumoylation occurring on a single residue (K226). We demonstrate that sumoylation of eIF4A2 is modestly increased in response to arsenite and ionising radiation, but decreases in response to heat shock or hippuristanol. In arsenite-treated cells, but not in hippuristanol-treated cells, eIF4A2 is recruited to stress granules, suggesting sumoylation of eIF4A2 correlates with its recruitment to stress granules. Furthermore, we demonstrate that the inability to sumoylate eIF4A2 results in impaired stress granule formation, indicating a new role for sumoylation in the stress response.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Estresse Fisiológico , Sumoilação , Sequência de Aminoácidos , Arsenitos/farmacologia , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos da radiação , Fator de Iniciação 4A em Eucariotos/química , Células HeLa , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Mutação/genética , Radiação Ionizante , Esteróis/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Sumoilação/efeitos dos fármacos , Sumoilação/efeitos da radiação
2.
EMBO Rep ; 15(8): 871-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24925530

RESUMO

Elongation of the telomeric overhang by telomerase is counteracted by synthesis of the complementary strand by the CST complex, CTC1(Cdc13)/Stn1/Ten1. Interaction of budding yeast Stn1 with overhang-binding Cdc13 is increased by Cdc13 SUMOylation. Human and fission yeast CST instead interact with overhang-binding TPP1/POT1. We show that the fission yeast TPP1 ortholog, Tpz1, is SUMOylated. Tpz1 SUMOylation restricts telomere elongation and promotes Stn1/Ten1 telomere association, and a SUMO-Tpz1 fusion protein has increased affinity for Stn1. Our data suggest that SUMO inhibits telomerase through stimulation of Stn1/Ten1 action by Tpz1, highlighting the evolutionary conservation of the regulation of CST function by SUMOylation.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Complexo Shelterina , Sumoilação , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Ligação a DNA , Evolução Molecular , Dados de Sequência Molecular , Ligação Proteica , Proteína SUMO-1/metabolismo , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/química , Telomerase/metabolismo , Homeostase do Telômero
3.
Chromosoma ; 122(6): 451-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23812602

RESUMO

A large number of proteins are modified post-translationally by the ubiquitin-like protein (Ubl) SUMO. This process, known as sumoylation, regulates the function, localisation and activity of target proteins as part of normal cellular metabolism, e.g., during development, and through the cell cycle, as well as in response to a range of stresses. In order to be effective, the sumoylation pathway itself must also be regulated. This review describes how the SUMOylation process is regulated. In particular, regulation of the SUMO conjugation and deconjugation machinery at the level of transcription and by post-translational modifications is discussed.


Assuntos
Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/genética , Acetilação , Animais , Regulação da Expressão Gênica , Humanos , Fosforilação , Transporte Proteico/genética , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
4.
Bioessays ; 33(7): 529-37, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21590786

RESUMO

Recent discoveries have identified the small ubiquitin-like modifier (SUMO) as the potential 'missing link' that could explain how the synaptonemal complex (SC) is formed during meiosis. The SC is important for a variety of chromosome interactions during meiosis and appears ladder-like. It is formed when 'axes' of the two homologous chromosomes become connected by the deposition of transverse filaments, forming the steps of the ladder. Although several components of axial and transverse elements have been identified, how the two are connected to form the SC has remained an enigma. Recent discoveries suggest that SUMO modification underlies protein-protein interactions within the SC of budding yeast. The versatility of SUMO in regulating protein-protein interactions adds an exciting new dimension to our understanding of the SC and suggests that SCs are not homogenous structures throughout the nucleus. We propose that this heterogeneity may allow differential regulation of chromosome structure and function.


Assuntos
Meiose/fisiologia , Proteína SUMO-1/metabolismo , Complexo Sinaptonêmico/metabolismo , Animais , Humanos , Meiose/genética , Proteína SUMO-1/genética , Complexo Sinaptonêmico/genética
5.
Chromosoma ; 119(1): 59-72, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19756689

RESUMO

In the fission yeast, Schizosaccharomyces pombe, synaptonemal complexes (SCs) are not formed during meiotic prophase. However, structures resembling the axial elements of SCs, the so-called linear elements (LinEs) appear. By in situ immunostaining, we found Pmt3 (S. pombe's SUMO protein) transiently along LinEs, suggesting that SUMOylation of some component(s) of LinEs occurs during meiosis. Mutation of the SUMO ligase Pli1 caused aberrant LinE formation and reduced genetic recombination indicating a role for SUMOylation of LinEs for the regulation of meiotic recombination. Western blot analysis of TAP-tagged Rec10 demonstrated that there is a Pli1-dependent posttranslational modification of this protein, which is a major LinE component and a distant homolog of the SC protein Red1. Mass spectrometry (MS) analysis revealed that Rec10 is both phosphorylated and ubiquitylated, but no evidence for SUMOylation of Rec10 was found. These findings indicate that the regulation of LinE and Rec10 function is modulated by Pli1-dependent SUMOylation of LinE protein(s) which directly or indirectly regulates Rec10 modification. On the side, MS analysis confirmed the interaction of Rec10 with the known LinE components Rec25, Rec27, and Hop1 and identified the meiotically upregulated protein Mug20 as a novel putative LinE-associated protein.


Assuntos
Meiose , Recombinação Genética , Proteínas Repressoras/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Pareamento Cromossômico , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Proteínas Repressoras/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
6.
Mol Biol Cell ; 17(7): 2976-85, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16641370

RESUMO

Ubiquitination of proliferating cell nuclear antigen (PCNA) plays a crucial role in regulating replication past DNA damage in eukaryotes, but the detailed mechanisms appear to vary in different organisms. We have examined the modification of PCNA in Schizosaccharomyces pombe. We find that, in response to UV irradiation, PCNA is mono- and poly-ubiquitinated in a manner similar to that in Saccharomyces cerevisiae. However in undamaged Schizosaccharomyces pombe cells, PCNA is ubiquitinated in S phase, whereas in S. cerevisiae it is sumoylated. Furthermore we find that, unlike in S. cerevisiae, mutants defective in ubiquitination of PCNA are also sensitive to ionizing radiation, and PCNA is ubiquitinated after exposure of cells to ionizing radiation, in a manner similar to the response to UV-irradiation. We show that PCNA modification and cell cycle checkpoints represent two independent signals in response to DNA damage. Finally, we unexpectedly find that PCNA is ubiquitinated in response to DNA damage when cells are arrested in G2.


Assuntos
Reparo do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Processamento de Proteína Pós-Traducional , Tolerância a Radiação , Schizosaccharomyces/genética , Ubiquitinas/metabolismo , Dano ao DNA , Replicação do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Fúngico/efeitos da radiação , Fase G2/efeitos da radiação , Mutação , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Tolerância a Radiação/genética , Radiação Ionizante , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/efeitos da radiação , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
7.
Elife ; 82019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31135337

RESUMO

Coordination of the cellular response to DNA damage is organised by multi-domain 'scaffold' proteins, including 53BP1 and TOPBP1, which recognise post-translational modifications such as phosphorylation, methylation and ubiquitylation on other proteins, and are themselves carriers of such regulatory signals. Here we show that the DNA damage checkpoint regulating S-phase entry is controlled by a phosphorylation-dependent interaction of 53BP1 and TOPBP1. BRCT domains of TOPBP1 selectively bind conserved phosphorylation sites in the N-terminus of 53BP1. Mutation of these sites does not affect formation of 53BP1 or ATM foci following DNA damage, but abolishes recruitment of TOPBP1, ATR and CHK1 to 53BP1 damage foci, abrogating cell cycle arrest and permitting progression into S-phase. TOPBP1 interaction with 53BP1 is structurally complimentary to its interaction with RAD9-RAD1-HUS1, allowing these damage recognition factors to bind simultaneously to the same TOPBP1 molecule and cooperate in ATR activation in the G1 DNA damage checkpoint.


Assuntos
Proteínas de Transporte/química , Dano ao DNA/genética , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/química , Proteínas Nucleares/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Transporte/genética , Pontos de Checagem do Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/química , Quinase 1 do Ponto de Checagem/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Metilação , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica/genética , Conformação Proteica , Domínios Proteicos/genética , Processamento de Proteína Pós-Traducional/genética , Fase S/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitinação/genética
8.
Mol Cell Biol ; 25(1): 185-96, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15601841

RESUMO

The Schizosaccharomyces pombe SMC proteins Rad18 (Smc6) and Spr18 (Smc5) exist in a high-M(r) complex which also contains the non-SMC proteins Nse1, Nse2, Nse3, and Rad62. The Smc5-6 complex, which is essential for viability, is required for several aspects of DNA metabolism, including recombinational repair and maintenance of the DNA damage checkpoint. We have characterized Nse2 and show here that it is a SUMO ligase. Smc6 (Rad18) and Nse3, but not Smc5 (Spr18) or Nse1, are sumoylated in vitro in an Nse2-dependent manner, and Nse2 is itself autosumoylated, predominantly on the C-terminal part of the protein. Mutations of C195 and H197 in the Nse2 RING-finger-like motif abolish Nse2-dependent sumoylation. nse2.SA mutant cells, in which nse2.C195S-H197A is integrated as the sole copy of nse2, are viable, whereas the deletion of nse2 is lethal. Smc6 (Rad18) is sumoylated in vivo: the sumoylation level is increased upon exposure to DNA damage and is drastically reduced in the nse2.SA strain. Since nse2.SA cells are sensitive to DNA-damaging agents and to exposure to hydroxyurea, this implicates the Nse2-dependent sumoylation activity in DNA damage responses but not in the essential function of the Smc5-6 complex.


Assuntos
Dano ao DNA , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Sequência de Aminoácidos , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA , Relação Dose-Resposta à Radiação , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Hidroxiureia/farmacologia , Cinética , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Recombinação Genética , Schizosaccharomyces/genética , Fatores de Tempo , Raios Ultravioleta
9.
Mol Cell Biol ; 25(1): 172-84, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15601840

RESUMO

The rad18 gene of Schizosaccharomyces pombe is an essential gene that is involved in several different DNA repair processes. Rad18 (Smc6) is a member of the structural maintenance of chromosomes (SMC) family and, together with its SMC partner Spr18 (Smc5), forms the core of a high-molecular-weight complex. We show here that both S. pombe and human Smc5 and -6 interact through their hinge domains and that four independent temperature-sensitive mutants of Rad18 (Smc6) are all mutated at the same glycine residue in the hinge region. This mutation abolishes the interactions between the hinge regions of Rad18 (Smc6) and Spr18 (Smc5), as does mutation of a conserved glycine in the hinge region of Spr18 (Smc5). We purified the Smc5-6 complex from S. pombe and identified four non-SMC components, Nse1, Nse2, Nse3, and Rad62. Nse3 is a novel protein which is related to the mammalian MAGE protein family, many members of which are specifically expressed in cancer tissue. In initial steps to understand the architecture of the complex, we identified two subcomplexes containing Rad18-Spr18-Nse2 and Nse1-Nse3-Rad62. The subcomplexes are probably bridged by a weaker interaction between Nse2 and Nse3.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiologia , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/fisiologia , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Dano ao DNA , Reparo do DNA , DNA Complementar/metabolismo , Relação Dose-Resposta à Radiação , Eletroforese em Gel de Poliacrilamida , Deleção de Genes , Glutationa Transferase/metabolismo , Glicina/química , Humanos , Imunoprecipitação , Espectrometria de Massas , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Temperatura , Fatores de Tempo , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
10.
Nat Commun ; 9(1): 532, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416038

RESUMO

The error-free and efficient repair of DNA double-stranded breaks (DSBs) is extremely important for cell survival. RNA has been implicated in the resolution of DNA damage but the mechanism remains poorly understood. Here, we show that miRNA biogenesis enzymes, Drosha and Dicer, control the recruitment of repair factors from multiple pathways to sites of damage. Depletion of Drosha significantly reduces DNA repair by both homologous recombination (HR) and non-homologous end joining (NHEJ). Drosha is required within minutes of break induction, suggesting a central and early role for RNA processing in DNA repair. Sequencing of DNA:RNA hybrids reveals RNA invasion around DNA break sites in a Drosha-dependent manner. Removal of the RNA component of these structures results in impaired repair. These results show how RNA can be a direct and critical mediator of DNA damage repair in human cells.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/metabolismo , RNA/metabolismo , Ribonuclease III/metabolismo , Células A549 , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Perfilação da Expressão Gênica , Recombinação Homóloga , Humanos , RNA/genética , Interferência de RNA , Ribonuclease III/genética
11.
DNA Repair (Amst) ; 5(3): 399-403, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16368276

RESUMO

Post-replication repair encompassses error-prone and error-free processes for bypassing lesions encountered during DNA replication. In Saccharomyces cerevisiae, proteins acting in the Rad6-dependent pathway are required to channel lesions into these pathways. Until recently there was little information as to how this channelling was regulated. However, several recent papers, and in particular from the Jentsch and Ulrich groups have provided striking insights into the role of modified forms of PCNA in these events [C. Hoege, B. Pfander, G.L. Moldovan, G. Pyrowolakis, S. Jentsch, RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO, Nature 419 (2002) 135-141; P. Stelter, H.D. Ulrich, Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation, Nature 425 (2003) 188-191; B. Pfander, G.L. Moldovan, M. Sacher, C. Hoege, S. Jentsch, SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase, Nature 436 (2005) 428-433; E. Papouli, S. Chen, A.A. Davies, D. Huttner, L. Krejci, P. Sung, H.D. Ulrich, Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p, Mol. Cell. 19 (2005) 123-133]. In particular they have shown that mono-ubiquitinated PCNA directs translesion synthesis via DNA polymerases with low stringency, and that polyubiquitinated PCNA is associated with error-free avoidance of lesions. Recent data have shown that the role of small ubiquitin-like modifier (SUMO) modification of PCNA is not an event that occurs merely in the absence of ubiquitination, rather it serves to recruit Srs2 to replication forks in order to inhibit recombination. The implications of these findings for post-replication repair in S. cerevisiae and other eukaryotes are discussed.


Assuntos
Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Recombinação Genética , Proteína SUMO-1/metabolismo , Animais , Humanos , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Saccharomyces cerevisiae , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
12.
Biochem J ; 389(Pt 2): 307-14, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15769255

RESUMO

Nedd8 is a ubiquitin-like modifier that is attached to the cullin components of E3 ubiquitin ligases. More recently, p53 has also been shown to be Nedd8-modified. Nedd8 attachment occurs in a manner similar to that observed for other ubiquitin-like modifiers. In the present study, we report on the characterization of Nep1, a deneddylating enzyme in fission yeast (Schizosaccharomyces pombe). Unlike loss of ned8, deletion of the nep1 gene is not lethal, although nep1.d cells are heterogeneous in length, suggesting a defect in cell-cycle progression. Viability of nep1.d cells is dependent on a functional spindle checkpoint but not on the DNA integrity checkpoint. Deletion of a related gene (nep2), either alone or in combination with nep1.d, also has little effect on cell viability. We show that Nep1 can deneddylate the Pcu1, Pcu3 and Pcu4 cullins in vitro and that its activity is sensitive to N-ethylmaleimide, consistent with the idea that it is a member of the cysteine protease family. nep1.d cells accumulate Nedd8-modified proteins, although these do not correspond to modified forms of the cullins, suggesting that, although Nep1 can deneddylate cullins in vitro, this is not its main function in vivo. Nep1 can be co-precipitated with the signalosome subunit Csn5. Nep1 itself is present in a high-molecular-mass complex, but the presence of this complex is not dependent on the production of intact signalosomes. Our results suggest that, in vivo, Nep1 may be responsible for deneddylating proteins other than cullins.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Sequência de Aminoácidos , Complexo do Signalossomo COP9 , Sobrevivência Celular , Proteínas Culina/química , Proteínas Culina/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/isolamento & purificação , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Imunoprecipitação , Metaloproteases/metabolismo , Dados de Sequência Molecular , Peso Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/isolamento & purificação , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
13.
Biomolecules ; 6(4)2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27999260

RESUMO

DNA double-strand breaks (DSBs) are among the most damaging lesions in DNA, since, if not identified and repaired, they can lead to insertions, deletions or chromosomal rearrangements. DSBs can be in the form of simple or complex breaks, and may be repaired by one of a number of processes, the nature of which depends on the complexity of the break or the position of the break within the chromatin. In eukaryotic cells, nuclear DNA is maintained as either euchromatin (EC) which is loosely packed, or in a denser form, much of which is heterochromatin (HC). Due to the less accessible nature of the DNA in HC as compared to that in EC, repair of damage in HC is not as straightforward as repair in EC. Here we review the literature on how cells deal with DSBs in HC.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Eucariotos/genética , Heterocromatina/genética , Animais , Reparo do DNA por Junção de Extremidades , Humanos
14.
Nat Struct Mol Biol ; 23(7): 647-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27239795

RESUMO

The opposing activities of 53BP1 and BRCA1 influence pathway choice in DNA double-strand-break repair. How BRCA1 counteracts the inhibitory effect of 53BP1 on DNA resection and homologous recombination is unknown. Here we identify the site of BRCA1-BARD1 required for priming ubiquitin transfer from E2∼ubiquitin and demonstrate that BRCA1-BARD1's ubiquitin ligase activity is required for repositioning 53BP1 on damaged chromatin. We confirm H2A ubiquitination by BRCA1-BARD1 and show that an H2A-ubiquitin fusion protein promotes DNA resection and repair in BARD1-deficient cells. BRCA1-BARD1's function in homologous recombination requires the chromatin remodeler SMARCAD1. SMARCAD1 binding to H2A-ubiquitin and optimal localization to sites of damage and activity in DNA repair requires its ubiquitin-binding CUE domains. SMARCAD1 is required for 53BP1 repositioning, and the need for SMARCAD1 in olaparib or camptothecin resistance is alleviated by 53BP1 loss. Thus, BRCA1-BARD1 ligase activity and subsequent SMARCAD1-dependent chromatin remodeling are critical regulators of DNA repair.


Assuntos
Proteína BRCA1/genética , Cromatina/metabolismo , DNA Helicases/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Reparo de DNA por Recombinação , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Proteína BRCA1/metabolismo , Sítios de Ligação , Camptotecina/farmacologia , Cromatina/química , Cromatina/efeitos dos fármacos , Clonagem Molecular , Quebras de DNA de Cadeia Dupla , Clivagem do DNA/efeitos dos fármacos , DNA Helicases/metabolismo , DNA de Neoplasias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Ftalazinas/farmacologia , Piperazinas/farmacologia , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
15.
Cell Rep ; 13(10): 2081-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26628370

RESUMO

53BP1 plays multiple roles in mammalian DNA damage repair, mediating pathway choice and facilitating DNA double-strand break repair in heterochromatin. Although it possesses a C-terminal BRCT2 domain, commonly involved in phospho-peptide binding in other proteins, initial recruitment of 53BP1 to sites of DNA damage depends on interaction with histone post-translational modifications--H4K20me2 and H2AK13/K15ub--downstream of the early γH2AX phosphorylation mark of DNA damage. We now show that, contrary to current models, the 53BP1-BRCT2 domain binds γH2AX directly, providing a third post-translational mark regulating 53BP1 function. We find that the interaction of 53BP1 with γH2AX is required for sustaining the 53BP1-dependent focal concentration of activated ATM that facilitates repair of DNA double-strand breaks in heterochromatin in G1.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA/fisiologia , Heterocromatina/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , RNA Interferente Pequeno , Transfecção , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
16.
Translation (Austin) ; 2(2): e959366, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26779408

RESUMO

Regulation of protein synthesis is of fundamental importance to cells. It has a critical role in the control of gene expression, and consequently cell growth and proliferation. The importance of this control is supported by the fact that protein synthesis is frequently upregulated in tumor cells. The major point at which regulation occurs is the initiation stage. Initiation of translation involves the interaction of several proteins to form the eIF4F complex, the recognition of the mRNA by this complex, and the subsequent recruitment of the 40S ribosomal subunit to the mRNA. This results in the formation of the 48S complex that then scans the mRNA for the start codon, engages the methionyl-tRNA and eventually forms the mature 80S ribosome which is elongation-competent. Formation of the 48S complex is regulated by the availability of individual initiation factors and through specific protein-protein interactions. Both of these events can be regulated by post-translational modification by ubiquitin or Ubls (ubiquitin-like modifiers) such as SUMO or ISG15. We provide here a summary of translation initiation factors that are modified by ubiquitin or Ubls and, where they have been studied in detail, describe the role of these modifications and their effects on regulating protein synthesis.

17.
PLoS One ; 9(5): e94182, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818994

RESUMO

SUMO is a small post-translational modifier, that is attached to lysine residues in target proteins. It acts by altering protein-protein interactions, protein localisation and protein activity. SUMO chains can also act as substrates for ubiquitination, resulting in proteasome-mediated degradation of the target protein. SUMO is removed from target proteins by one of a number of specific proteases. The processes of sumoylation and desumoylation have well documented roles in DNA metabolism and in the maintenance of chromatin structure. To further analyse the role of this modification, we have purified protein complexes containing the S. pombe SUMO protease, Ulp2. These complexes contain proteins required for ribosome biogenesis, RNA stability and protein synthesis. Here we have focussed on two translation initiation factors that we identified as co-purifying with Ulp2, eIF4G and eIF3h. We demonstrate that eIF4G, but not eIF3h, is sumoylated. This modification is increased under conditions that produce cytoplasmic stress granules. Consistent with this we observe partial co-localisation of eIF4G and SUMO in stressed cells. Using HeLa cells, we demonstrate that human eIF4GI is also sumoylated; in vitro studies indicate that human eIF4GI is modified on K1368 and K1588, that are located in the C-terminal eIF4A- and Mnk-binding sites respectively.


Assuntos
Endopeptidases/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sumoilação/fisiologia , Células HeLa , Humanos , Schizosaccharomyces/metabolismo
18.
DNA Repair (Amst) ; 9(2): 103-8, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19945358

RESUMO

BRCT domains are present in an ever expanding family of proteins that includes many DNA repair and checkpoint proteins. The most prominent member of the BRCT family is BRCA1, mutations in which are responsible for a high proportion of breast and ovarian cancers. BRCT domains act as protein-protein interaction modules and facilitate the formation of hetero- and homo-oligomers. The domains occur either singly or in pairs, with up to eight domains in a single protein. When in pairs the domains are separated by a short inter-BRCT linker. Numerous crystal structures have been determined for BRCT domains from a range of different proteins, which indicate that the overall structure of the BRCT domains is generally well conserved. In contrast, the positions and structures of the linker regions are more varied, as are the roles of the linkers. Here, we describe the protein-protein interactions involving three different inter-BRCT linker regions, those of DNA ligase IV (LigIV), Schizosaccharomyces pombe Crb2 and human 53BP1.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Doença , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
PLoS One ; 5(9): e13009, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20885950

RESUMO

The S. pombe Rad60 protein is required for the repair of DNA double strand breaks, recovery from replication arrest, and is essential for cell viability. It has two SUMO-like domains (SLDs) at its C-terminus, an SXS motif and three sequences that have been proposed to be SUMO-binding motifs (SBMs). SMB1 is located in the middle of the protein, SBM2 is in SLD1 and SBM3 is at the C-terminus of SLD2. We have probed the functions of the two SUMO-like domains, SLD1 and SLD2, and the putative SBMs. SLD1 is essential for viability, while SLD2 is not. rad60-SLD2Δ cells are sensitive to DNA damaging agents and hydroxyurea. Neither ubiquitin nor SUMO can replace SLD1 or SLD2. Cells in which either SBM1 or SBM2 has been mutated are viable and are wild type for response to MMS and HU. In contrast mutation of SBM3 results in significant sensitivity to MMS and HU. These results indicate that the lethality resulting from deletion of SLD1 is not due to loss of SBM2, but that mutation of SBM3 produces a more severe phenotype than does deletion of SLD2. Using chemical denaturation studies, FPLC and dynamic light scattering we show this is likely due to the destabilisation of SLD2. Thus we propose that the region corresponding to the putative SBM3 forms part of the hydrophobic core of SLD2 and is not a SUMO-interacting motif. Over-expression of Hus5, which is the SUMO conjugating enzyme and known to interact with Rad60, does not rescue rad60-SLD2Δ, implying that as well as having a role in the sumoylation process as previously described, Rad60 has a Hus5-independent function.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas de Schizosaccharomyces pombe/química , Motivos de Aminoácidos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Viabilidade Microbiana , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Deleção de Sequência , Sumoilação , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
20.
PLoS One ; 4(8): e6750, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19707600

RESUMO

SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pombe.


Assuntos
Schizosaccharomyces/citologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia , Dano ao DNA , Eletroforese em Gel Bidimensional , Hidroxiureia/farmacologia , Fosforilação , Schizosaccharomyces/efeitos dos fármacos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA