Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(33): E506-12, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21808030

RESUMO

The shape of a plant is largely determined by regulation of lateral branching. Branching architecture can vary widely in response to both genotype and environment, suggesting regulation by a complex interaction of autonomous genetic factors and external signals. Tillers, branches initiated at the base of grass plants, are suppressed in response to shade conditions. This suppression of tiller and lateral branch growth is an important trait selected by early agriculturalists during maize domestication and crop improvement. To understand how plants integrate external environmental cues with endogenous signals to control their architecture, we have begun a functional characterization of the maize mutant grassy tillers1 (gt1). We isolated the gt1 gene using positional cloning and found that it encodes a class I homeodomain leucine zipper gene that promotes lateral bud dormancy and suppresses elongation of lateral ear branches. The gt1 expression is induced by shading and is dependent on the activity of teosinte branched1 (tb1), a major domestication locus controlling tillering and lateral branching. Interestingly, like tb1, gt1 maps to a quantitative trait locus that regulates tillering and lateral branching in maize and shows evidence of selection during maize domestication. Branching and shade avoidance are both of critical agronomic importance, but little is known about how these processes are integrated. Our results indicate that gt1 mediates the reduced branching associated with the shade avoidance response in the grasses. Furthermore, selection at the gt1 locus suggests that it was involved in improving plant architecture during the domestication of maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Poaceae/fisiologia , Luz Solar , Genes de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/genética , Zea mays/genética , Zea mays/fisiologia
2.
Genet Res (Camb) ; 93(1): 65-75, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21144126

RESUMO

MADS-box genes encode transcription factors that are key regulators of plant inflorescence and flower development. We examined DNA sequence variation in 32 maize MADS-box genes and 32 randomly chosen maize loci and investigated their involvement in maize domestication and improvement. Using neutrality tests and a test based on coalescent simulation of a bottleneck model, we identified eight MADS-box genes as putative targets of the artificial selection associated with domestication. According to neutrality tests, one additional MADS-box gene appears to have been under selection during modern agricultural improvement of maize. For random loci, two genes were indicated as targets of selection during domestication and four additional genes were indicated to be candidate-selected loci for maize improvement. These results suggest that MADS-box genes were more frequent targets of selection during domestication than genes chosen at random from the genome.


Assuntos
Genes de Plantas , Proteínas de Plantas/genética , Seleção Genética/genética , Fatores de Transcrição/genética , Zea mays/genética , Variação Genética , Genoma de Planta , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/metabolismo
3.
Genetics ; 180(2): 1221-32, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18791250

RESUMO

Previous association analyses showed that variation at major regulatory genes contributes to standing variation for complex traits in Balsas teosinte, the progenitor of maize. This study expands our previous association mapping effort in teosinte by testing 123 markers in 52 candidate genes for association with 31 traits in a population of 817 individuals. Thirty-three significant associations for markers from 15 candidate genes and 10 traits survive correction for multiple testing. Our analyses suggest several new putative causative relationships between specific genes and trait variation in teosinte. For example, two ramosa genes (ra1 and ra2) associate with ear structure, and the MADS-box gene, zagl1, associates with ear shattering. Since zagl1 was previously shown to be a target of selection during maize domestication, we suggest that this gene was under selection for its effect on the loss of ear shattering, a key domestication trait. All observed effects were relatively small in terms of the percentage of phenotypic variation explained (<10%). We also detected several epistatic interactions between markers in the same gene that associate with the same trait. Candidate-gene-based association mapping appears to be a promising method for investigating the inheritance of complex traits in teosinte.


Assuntos
Genes de Plantas , Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico , Frequência do Gene , Genótipo , Haplótipos , Modelos Genéticos , Fenótipo , Seleção Genética , Zea mays/classificação
4.
PLoS One ; 7(4): e34745, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496853

RESUMO

BACKGROUND: Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress. METHODS AND FINDINGS: We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis. CONCLUSIONS: We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.


Assuntos
Drosophila melanogaster/genética , Estudo de Associação Genômica Ampla , Estresse Oxidativo/genética , Animais , DNA/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Feminino , Herbicidas/toxicidade , Masculino , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Paraquat/toxicidade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/efeitos dos fármacos , Locos de Características Quantitativas/genética , Vitamina K 3/efeitos adversos , Vitaminas/efeitos adversos
5.
Genetics ; 191(3): 883-94, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22542971

RESUMO

Chromosomal inversions are thought to play a special role in local adaptation, through dramatic suppression of recombination, which favors the maintenance of locally adapted alleles. However, relatively few inversions have been characterized in population genomic data. On the basis of single-nucleotide polymorphism (SNP) genotyping across a large panel of Zea mays, we have identified an ∼50-Mb region on the short arm of chromosome 1 where patterns of polymorphism are highly consistent with a polymorphic paracentric inversion that captures >700 genes. Comparison to other taxa in Zea and Tripsacum suggests that the derived, inverted state is present only in the wild Z. mays subspecies parviglumis and mexicana and is completely absent in domesticated maize. Patterns of polymorphism suggest that the inversion is ancient and geographically widespread in parviglumis. Cytological screens find little evidence for inversion loops, suggesting that inversion heterozygotes may suffer few crossover-induced fitness consequences. The inversion polymorphism shows evidence of adaptive evolution, including a strong altitudinal cline, a statistical association with environmental variables and phenotypic traits, and a skewed haplotype frequency spectrum for inverted alleles.


Assuntos
Inversão Cromossômica/genética , Cromossomos de Plantas/genética , Polimorfismo Genético/genética , Zea mays/genética , Alelos , Evolução Molecular , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Tempo
6.
Genetics ; 186(4): 1475-85, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20870963

RESUMO

How functional diversification affects the organization of the transcriptome is a central question in systems genetics. To explore this issue, we sequenced all six Odorant binding protein (Obp) genes located on the X chromosome, four of which occur as a cluster, in 219 inbred wild-derived lines of Drosophila melanogaster and tested for associations between genetic and phenotypic variation at the organismal and transcriptional level. We observed polymorphisms in Obp8a, Obp19a, Obp19b, and Obp19c associated with variation in olfactory responses and polymorphisms in Obp19d associated with variation in life span. We inferred the transcriptional context, or "niche," of each gene by identifying expression polymorphisms where genetic variation in these Obp genes was associated with variation in expression of transcripts genetically correlated to each Obp gene. All six Obp genes occupied a distinct transcriptional niche. Gene ontology enrichment analysis revealed associations of different Obp transcriptional niches with olfactory behavior, synaptic transmission, detection of signals regulating tissue development and apoptosis, postmating behavior and oviposition, and nutrient sensing. Our results show that diversification of the Obp family has organized distinct transcriptional niches that reflect their acquisition of additional functions.


Assuntos
Drosophila melanogaster/genética , Receptores Odorantes/genética , Animais , Proteínas de Drosophila/genética , Genes de Insetos , Variação Genética , Transcrição Gênica
7.
PLoS One ; 4(12): e8227, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20011044

RESUMO

BACKGROUND: Large-scale screens of the maize genome identified 48 genes that show the putative signature of artificial selection during maize domestication or improvement. These selection-candidate genes may act as quantitative trait loci (QTL) that control the phenotypic differences between maize and its progenitor, teosinte. The selection-candidate genes appear to be located closer in the genome to domestication QTL than expected by chance. METHODS AND FINDINGS: As a step toward defining the traits controlled by these genes, we performed phenotype-genotype association mapping in teosinte for 32 of the 48 plus three other selection-candidate genes. Our analyses assayed 32 phenotypic traits, many of which were altered during maize domestication or improvement. We observed several significant associations between SNPs in the selection-candidate genes and trait variation in teosinte. These included two associations that surpassed the Bonferroni correction and five instances where a gene significantly associated with the same trait in both of our association mapping panels. Despite these significant associations, when compared as a group the selection-candidate genes performed no better than randomly chosen genes. CONCLUSIONS: Our results suggest association analyses can be helpful for identifying traits under the control of selection-candidate genes. Indeed, we present evidence for new functions for several selection-candidate genes. However, with the current set of selection-candidate genes and our association mapping strategy, we found very few significant associations overall and no more than we would have found with randomly chosen genes. We discuss possible reasons that a large number of significant genotype-phenotype associations were not discovered.


Assuntos
Mapeamento Cromossômico , Produtos Agrícolas/genética , Genes de Plantas , Seleção Genética , Zea mays/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA