Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2308342120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983492

RESUMO

COVID-19 pneumonia causes acute lung injury and acute respiratory distress syndrome (ALI/ARDS) characterized by early pulmonary endothelial and epithelial injuries with altered pulmonary diffusing capacity and obstructive or restrictive physiology. Growth hormone-releasing hormone receptor (GHRH-R) is expressed in the lung and heart. GHRH-R antagonist, MIA-602, has been reported to modulate immune responses to bleomycin lung injury and inflammation in granulomatous sarcoidosis. We hypothesized that MIA-602 would attenuate rVSV-SARS-CoV-2-induced pulmonary dysfunction and heart injury in a BSL-2 mouse model. Male and female K18-hACE2tg mice were inoculated with SARS-CoV-2/USA-WA1/2020, BSL-2-compliant recombinant VSV-eGFP-SARS-CoV-2-Spike (rVSV-SARS-CoV-2), or PBS, and lung viral load, weight loss, histopathology, and gene expression were compared. K18-hACE2tg mice infected with rVSV-SARS-CoV-2 were treated daily with subcutaneous MIA-602 or vehicle and conscious, unrestrained plethysmography performed on days 0, 3, and 5 (n = 7 to 8). Five days after infection mice were killed, and blood and tissues collected for histopathology and protein/gene expression. Both native SARS-CoV-2 and rVSV-SARS-CoV-2 presented similar patterns of weight loss, infectivity (~60%), and histopathologic changes. Daily treatment with MIA-602 conferred weight recovery, reduced lung perivascular inflammation/pneumonia, and decreased lung/heart ICAM-1 expression compared to vehicle. MIA-602 rescued altered respiratory rate, increased expiratory parameters (Te, PEF, EEP), and normalized airflow parameters (Penh and Rpef) compared to vehicle, consistent with decreased airway inflammation. RNASeq followed by protein analysis revealed heightened levels of inflammation and end-stage necroptosis markers, including ZBP1 and pMLKL induced by rVSV-SARS-CoV-2, that were normalized by MIA-602 treatment, consistent with an anti-inflammatory and pro-survival mechanism of action in this preclinical model of COVID-19 pneumonia.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Camundongos , Masculino , Feminino , Animais , SARS-CoV-2 , COVID-19/patologia , Pulmão/patologia , Inflamação/patologia , Síndrome do Desconforto Respiratório/patologia , Redução de Peso , Camundongos Transgênicos , Modelos Animais de Doenças
2.
FASEB J ; 36(1): e22106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918375

RESUMO

Choroidal neovascularization (CNV), a leading cause of blindness in the elderly, is routinely treated with vascular endothelial growth factor (VEGF) inhibitors that have limited efficacy and potentially adverse side effects. An unmet clinical need is to develop novel therapies against other angiogenic factors for alternative or combination treatment to improve efficacy and safety. We recently described secretogranin III (Scg3) as a disease-selective angiogenic factor, causally linked to diabetic retinopathy and acting independently of the VEGF pathway. An important question is whether such a disease-selective Scg3 pathway contributes to other states of pathological angiogenesis beyond diabetic retinopathy. By applying a novel in vivo endothelial ligand binding assay, we found that the binding of Scg3 to CNV vessels in live mice was markedly increased over background binding to healthy choriocapillaris and blocked by an Scg3-neutralizing antibody, whereas VEGF showed no such differential binding. Intravitreal injection of anti-Scg3 humanized antibody Fab (hFab) inhibited Matrigel-induced CNV with similar efficacy to the anti-VEGF drug aflibercept. Importantly, a combination of anti-Scg3 hFab and aflibercept synergistically alleviated CNV. Homozygous deletion of the Scg3 gene markedly reduced CNV severity and abolished the therapeutic activity of anti-Scg3 hFab, but not aflibercept, suggesting a role for Scg3 in VEGF-independent CNV pathogenesis and therapy. Our work demonstrates the stringent disease selectivity of Scg3 binding and positions anti-Scg3 hFab as a next-generation disease-targeted anti-angiogenic therapy for CNV.


Assuntos
Neovascularização de Coroide/metabolismo , Cromograninas/metabolismo , Transdução de Sinais , Animais , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/genética , Cromograninas/genética , Feminino , Fragmentos Fab das Imunoglobulinas/farmacologia , Masculino , Camundongos , Camundongos Knockout , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Cell Mol Life Sci ; 79(1): 63, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35006382

RESUMO

Conventional angiogenic factors, such as vascular endothelial growth factor (VEGF), regulate both pathological and physiological angiogenesis indiscriminately, and their inhibitors may elicit adverse side effects. Secretogranin III (Scg3) was recently reported to be a diabetes-restricted VEGF-independent angiogenic factor, but the disease selectivity of Scg3 in retinopathy of prematurity (ROP), a retinal disease in preterm infants with concurrent pathological and physiological angiogenesis, was not defined. Here, using oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP, we quantified an exclusive binding of Scg3 to diseased versus healthy developing neovessels that contrasted sharply with the ubiquitous binding of VEGF. Functional immunohistochemistry visualized Scg3 binding exclusively to disease-related disorganized retinal neovessels and neovascular tufts, whereas VEGF bound to both disorganized and well-organized neovessels. Homozygous deletion of the Scg3 gene showed undetectable effects on physiological retinal neovascularization but markedly reduced the severity of OIR-induced pathological angiogenesis. Furthermore, anti-Scg3 humanized antibody Fab (hFab) inhibited pathological angiogenesis with similar efficacy to anti-VEGF aflibercept. Aflibercept dose-dependently blocked physiological angiogenesis in neonatal retinas, whereas anti-Scg3 hFab was without adverse effects at any dose and supported a therapeutic window at least 10X wider than that of aflibercept. Therefore, Scg3 stringently regulates pathological but not physiological angiogenesis, and anti-Scg3 hFab satisfies essential criteria for development as a safe and effective disease-targeted anti-angiogenic therapy for ROP.


Assuntos
Inibidores da Angiogênese/farmacologia , Cromograninas/imunologia , Cromograninas/metabolismo , Neovascularização Patológica/genética , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/patologia , Animais , Capilares/metabolismo , Cromograninas/antagonistas & inibidores , Cromograninas/genética , Modelos Animais de Doenças , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia , Neovascularização Retiniana/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
4.
BMC Nephrol ; 24(1): 300, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828432

RESUMO

BACKGROUND: Alport syndrome (AS) is caused by mutations in type IV collagen genes that typically target and compromise the integrity of basement membranes in kidney, ocular, and sensorineural cochlear tissues. Type IV and V collagens are also integral components of arterial walls, and whereas collagenopathies including AS are implicated in aortic disease, the incidence of aortic aneurysm in AS is unknown probably because of underreporting. Consequently, AS is not presently considered an independent risk factor for aortic aneurysm and more detailed case studies including histological evidence of basement membrane abnormalities are needed to determine such a possible linkage. CASE PRESENTATION: Here, we present unique histopathological findings of an ascending aortic aneurysm collected at the time of surgery from an AS patient wherein hypertension was the only other known risk factor. CONCLUSIONS: The studies reveal classical histological features of aortic aneurysm, including atheroma, lymphocytic infiltration, elastin disruption, and myxoid degeneration with probable AS association.


Assuntos
Aneurisma da Aorta Ascendente , Aneurisma Aórtico , Nefrite Hereditária , Humanos , Nefrite Hereditária/complicações , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Rim/patologia , Colágeno Tipo IV/genética , Aneurisma Aórtico/diagnóstico por imagem , Aneurisma Aórtico/genética
5.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445707

RESUMO

Diabetic retinopathy (DR), a leading cause of vision loss in working-age adults, induces mosaic patterns of vasculopathy that may be associated with spatial heterogeneity of intraretinal endothelial cells. We recently reported that secretogranin III (Scg3), a neuron-derived angiogenic and vascular leakage factor, selectively binds retinal vessels of diabetic but not healthy mice. Here, we investigated endothelial heterogeneity of three retinal vascular plexuses in DR pathogenesis and the therapeutic implications. Our unique in vivo ligand binding assay detected a 22.7-fold increase in Scg3 binding to retinal vessels of diabetic mice relative to healthy mice. Functional immunohistochemistry revealed that Scg3 predominantly binds to the DR-stressed CD31- deep retinal vascular plexus but not to the relatively healthy CD31+ superficial and intermediate plexuses within the same diabetic retina. In contrast, VEGF bound to healthy and diabetic retinal vessels indiscriminately with low activity. FITC-dextran assays indicated that selectively increased retinal vascular leakage coincides with Scg3 binding in diabetic mice that was independent of VEGF, whereas VEGF-induced leakage did not distinguish between diabetic and healthy mice. Dose-response curves showed that the anti-Scg3 humanized antibody (hAb) and anti-VEGF aflibercept alleviated DR leakage with equivalent efficacies, and that the combination acted synergistically. These findings suggest: (i) the deep plexus is highly sensitive to DR; (ii) Scg3 binding to the DR deep plexus coincides with the loss of CD31 and compromised endothelial junctions; (iii) anti-Scg3 hAb alleviates vascular leakage by selectively targeting the DR-stressed deep plexus within the same diabetic retina; (iv) combined anti-Scg3 and anti-VEGF treatments synergistically ameliorate DR through distinct mechanisms.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Camundongos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Diabetes Mellitus Experimental/patologia , Retina/metabolismo , Vasos Retinianos/metabolismo
6.
Cell Mol Life Sci ; 78(16): 5977-5985, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34230991

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision loss in working adults in developed countries. The disease traditionally classified as a microvascular complication of diabetes is now widely recognized as a neurovascular disorder resulting from disruption of the retinal neurovascular unit (NVU). The NVU comprising retinal neurons, glia and vascular cells coordinately regulates blood flow, vascular density and permeability to maintain homeostasis. Disturbance of the NVU during DR can lead to vision-threatening clinical manifestations. A limited number of signaling pathways have been identified for intercellular communication within the NVU, including vascular endothelial growth factor (VEGF), the master switch for angiogenesis. VEGF inhibitors are now widely used to treat DR, but their limited efficacy implies that other signaling molecules are involved in the pathogenesis of DR. By applying a novel screening technology called comparative ligandomics, we recently discovered secretogranin III (Scg3) as a unique DR-selective angiogenic and vascular leakage factor with therapeutic potential for DR. This review proposes neuron-derived Scg3 as the first diabetes-selective neurovascular regulator and discusses important features of Scg3 inhibition for next-generation disease-targeted anti-angiogenic therapies of DR.


Assuntos
Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Animais , Cromograninas/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Neurônios/metabolismo , Neurônios/patologia , Retina/metabolismo , Retina/patologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743114

RESUMO

Alport syndrome (AS) is a hereditary renal disorder with no etiological therapy. In the preclinical Col4a3-/- model of AS, disease progression and severity vary depending on mouse strain. The sodium-glucose cotransporter 2 (SGLT2) is emerging as an attractive therapeutic target in cardiac/renal pathologies, but its application to AS remains untested. This study investigates cardiorespiratory function and SGLT2 renal expression in Col4a3-/- mice from three different genetic backgrounds, 129x1/SvJ, C57Bl/6 and Balb/C. male Col4a3-/- 129x1/SvJ mice displayed alterations consistent with heart failure with preserved ejection fraction (HFpEF). Female, but not male, C57Bl/6 and Balb/C Col4a3-/- mice exhibited mild changes in systolic and diastolic function of the heart by echocardiography. Male C57Bl/6 Col4a3-/- mice presented systolic dysfunction by invasive hemodynamic analysis. All strains except Balb/C males demonstrated alterations in respiratory function. SGLT2 expression was significantly increased in AS compared to WT mice from all strains. However, cardiorespiratory abnormalities and SGLT2 over-expression were significantly less in AS Balb/C mice compared to the other two strains. Systolic blood pressure was significantly elevated only in mutant 129x1/SvJ mice. The results provide further evidence for strain-dependent cardiorespiratory and hypertensive phenotype variations in mouse AS models, corroborated by renal SGLT2 expression, and support ongoing initiatives to develop SGLT2 inhibitors for the treatment of AS.


Assuntos
Autoantígenos/metabolismo , Colágeno Tipo IV/metabolismo , Insuficiência Cardíaca , Nefrite Hereditária , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nefrite Hereditária/genética , Fenótipo , Transportador 2 de Glucose-Sódio/genética , Volume Sistólico
8.
Am J Physiol Heart Circ Physiol ; 320(5): H1862-H1872, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33769915

RESUMO

There are currently no Food and Drug Administration-approved treatments for heart failure with preserved ejection fraction (HFpEF). Here we compared the effects of exercise with and without α/ß-adrenergic blockade with carvedilol in Col4a3-/- Alport mice, a model of the phenogroup 3 subclass of HFpEF with underlying renal dysfunction. Alport mice were assigned to the following groups: no treatment control (n = 29), carvedilol (n = 11), voluntary exercise (n = 9), and combination carvedilol and exercise (n = 8). Cardiac function was assessed by echocardiography after 4-wk treatments. Running activity of Alport mice was similar to wild types at 1 mo of age but markedly reduced at 2 mo (1.3 ± 0.40 vs. 4.5 ± 1.02 km/day, P < 0.05). There was a nonsignificant trend for increased running activity at 2 mo by carvedilol in the combination treatment group. Combination treatments conferred increased body weight of Col4a3-/- mice (22.0 ± 1.18 vs. 17.8 ± 0.29 g in untreated mice, P < 0.01), suggesting improved physiology, and heart rates declined by similar increments in all carvedilol-treatment groups. The combination treatment improved systolic parameters; stroke volume (30.5 ± 1.99 vs. 17.8 ± 0.77 µL, P < 0.0001) as well as ejection fraction and global longitudinal strain compared with controls. Myocardial performance index was normalized by all interventions (P < 0.0001). Elevated osteopontin plasma levels in control Alport mice were significantly lowered only by combination treatment, and renal function of the Alport group assessed by urine albumin creatinine ratio was significantly improved by all treatments. The results support synergistic roles for exercise and carvedilol to augment cardiac systolic function of Alport mice with moderately improved renal functions but no change in diastole.NEW & NOTEWORTHY In an Alport mouse model of heart failure with preserved ejection fraction (HFpEF), exercise and carvedilol synergistically improved systolic function without affecting diastole. Carvedilol alone or in combination with exercise also improved kidney function. Molecular analyses indicate that the observed improvements in cardiorenal functions were mediated at least in part by effects on serum osteopontin and related inflammatory cytokine cascades. The work presents new potential therapeutic targets and approaches for HFpEF.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carvedilol/farmacologia , Colágeno Tipo IV/deficiência , Terapia por Exercício , Insuficiência Cardíaca/terapia , Nefrite Hereditária/terapia , Osteopontina/sangue , Disfunção Ventricular Esquerda/terapia , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Autoantígenos/genética , Biomarcadores/sangue , Colágeno Tipo IV/genética , Terapia Combinada , Diástole , Modelos Animais de Doenças , Regulação para Baixo , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Knockout , Nefrite Hereditária/sangue , Nefrite Hereditária/genética , Nefrite Hereditária/fisiopatologia , Recuperação de Função Fisiológica , Sístole , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
9.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R575-R587, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33565369

RESUMO

Approximately 14% of the general population suffer from chronic kidney disease that can lead to acute kidney injury (AKI), a condition with up to 50% mortality for which there is no effective treatment. Hypertension, diabetes, and cardiovascular disease are the main comorbidities, and more than 660,000 Americans have kidney failure. ß2-Adrenergic receptors (ß2ARs) have been extensively studied in association with lung and cardiovascular disease, but with limited scope in kidney and renal diseases. ß2ARs are expressed in multiple parts of the kidney including proximal and distal convoluted tubules, glomeruli, and podocytes. Classical and noncanonical ß2AR signaling pathways interface with other intracellular mechanisms in the kidney to regulate important cellular functions including renal blood flow, electrolyte balance and salt handling, and tubular function that in turn exert control over critical physiology and pathology such as blood pressure and inflammatory responses. Nephroprotection through activation of ß2ARs has surfaced as a promising field of investigation; however, there is limited data on the pharmacology and potential side effects of renal ß2AR modulation. Here, we provide updates on some of the major areas of preclinical kidney research involving ß2AR signaling that have advanced to describe molecular pathways and identify potential drug targets some of which are currently under clinical development for the treatment of kidney-related diseases.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Animais , Humanos , Rim/metabolismo , Rim/fisiopatologia , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais
10.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062733

RESUMO

Retinopathy of prematurity (ROP) is an ocular vascular disease affecting premature infants, characterized by pathological retinal neovascularization (RNV), dilated and tortuous retinal blood vessels, and retinal or vitreous hemorrhages that may lead to retinal detachment, vision impairment and blindness. Compared with other neovascular diseases, ROP is unique because of ongoing and concurrent physiological and pathological angiogenesis in the developing retina. While the disease is currently treated by laser or cryotherapy, anti-vascular endothelial growth factor (VEGF) agents have been extensively investigated but are not approved in the U.S. because of safety concerns that they negatively interfere with physiological angiogenesis of the developing retina. An ideal therapeutic strategy would selectively inhibit pathological but not physiological angiogenesis. Our group recently described a novel strategy that selectively and safely alleviates pathological RNV in animal models of ROP by targeting secretogranin III (Scg3), a disease-restricted angiogenic factor. The preclinical profile of anti-Scg3 therapy presents a high potential for next-generation disease-targeted anti-angiogenic therapy for the ROP indication. This review focuses on retinal vessel development in neonates, the pathogenesis of ROP and its underlying molecular mechanisms, including different animal models, and provides a summary of current and emerging therapies.


Assuntos
Cromograninas/genética , Neovascularização Patológica/tratamento farmacológico , Oxigênio/uso terapêutico , Retinopatia da Prematuridade/tratamento farmacológico , Animais , Animais Recém-Nascidos , Cromograninas/antagonistas & inibidores , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Retina/efeitos dos fármacos , Retina/crescimento & desenvolvimento , Retina/patologia , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/patologia , Fator A de Crescimento do Endotélio Vascular/genética
11.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008775

RESUMO

The retinopathy of prematurity (ROP), a neovascular retinal disorder presenting in premature infants, is the leading causes of blindness in children. Currently, there is no approved drug therapy for ROP in the U.S., highlighting the urgent unmet clinical need for a novel therapeutic to treat the disease. Secretogranin III (Scg3) was recently identified as a disease-selective angiogenic factor, and Scg3-neutralizing monoclonal antibodies were reported to alleviate pathological retinal neovascularization in mouse models. In this study, we characterized the efficacy and safety of a full-length humanized anti-Scg3 antibody (hAb) to ameliorate retinal pathology in oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP, by implementing histological and functional analyses. Our results demonstrate that the anti-Scg3 hAb outperforms the vascular endothelial growth factor inhibitor aflibercept in terms of efficacy and safety to treat OIR mice. Our findings support the development of anti-Scg3 hAb for clinical application.


Assuntos
Anticorpos/uso terapêutico , Cromograninas/imunologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/imunologia , Animais , Animais Recém-Nascidos , Anticorpos/administração & dosagem , Humanos , Injeções Intravítreas , Camundongos Endogâmicos C57BL , Oxigênio , Doenças Retinianas/fisiopatologia , Neovascularização Retiniana/patologia , Resultado do Tratamento , Visão Ocular
12.
Circ Res ; 122(10): 1395-1408, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29618597

RESUMO

RATIONALE: Vascular calcification (VC) is a marker of the severity of atherosclerotic disease. Hormones play important roles in regulating calcification; estrogen and parathyroid hormones exert opposing effects, the former alleviating VC and the latter exacerbating it. To date no treatment strategies have been developed to regulate clinical VC. OBJECTIVE: The objective of this study was to investigate the effect of growth hormone-releasing hormone (GHRH) and its agonist (GHRH-A) on the blocking of VC in a mouse model. METHODS AND RESULTS: Young adult osteoprotegerin-deficient mice were given daily subcutaneous injections of GHRH-A (MR409) for 4 weeks. Significant reductions in calcification of the aortas of MR409-treated mice were paralleled by markedly lower alkaline phosphatase activity and a dramatic reduction in the expression of transcription factors, including the osteogenic marker gene Runx2 and its downstream factors, osteonectin and osteocalcin. The mechanism of action of GHRH-A was dissected in smooth muscle cells isolated from human and mouse aortas. Calcification of smooth muscle cells induced by osteogenic medium was inhibited in the presence of GHRH or MR409, as evidenced by reduced alkaline phosphatase activity and Runx2 expression. Inhibition of calcification by MR409 was partially reversed by MIA602, a GHRH antagonist, or a GHRH receptor-selective small interfering RNA. Treatment with MR409 induced elevated cytosolic cAMP and its target, protein kinase A which in turn blocked nicotinamide adenine dinucleotide phosphate oxidase activity and reduced production of reactive oxygen species, thus blocking the phosphorylation of nuclear factor κB (p65), a key intermediate in the ligand of receptor activator for nuclear factor-κ B-Runx2/alkaline phosphatase osteogenesis program. A protein kinase A-selective small interfering RNA or the chemical inhibitor H89 abolished these beneficial effects of MR409. CONCLUSIONS: GHRH-A controls osteogenesis in smooth muscle cells by targeting cross talk between protein kinase A and nuclear factor κB (p65) and through the suppression of reactive oxygen species production that induces the Runx2 gene and alkaline phosphatase. Inflammation-mediated osteogenesis is thereby blocked. GHRH-A may represent a new pharmacological strategy to regulate VC.


Assuntos
Fragmentos de Peptídeos/uso terapêutico , Calcificação Vascular/prevenção & controle , Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/genética , Animais , Aorta/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Meios de Cultura/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hormônio Liberador de Hormônio do Crescimento , Transplante de Coração , Humanos , Isoquinolinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Osteoprotegerina/deficiência , Fragmentos de Peptídeos/farmacologia , RNA Interferente Pequeno/genética , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/antagonistas & inibidores , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Sulfonamidas/farmacologia , Fator de Transcrição RelA/metabolismo , Calcificação Vascular/fisiopatologia
13.
Br J Cancer ; 121(10): 827-836, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31611612

RESUMO

BACKGROUND: Guidelines remain unclear over whether patients with early stage oral cancer without overt neck disease benefit from upfront elective neck dissection (END), particularly those with the smallest tumours. METHODS: We conducted a randomised trial of patients with stage T1/T2 N0 disease, who had their mouth tumour resected either with or without END. Data were also collected from a concurrent cohort of patients who had their preferred surgery. Endpoints included overall survival (OS) and disease-free survival (DFS). We conducted a meta-analysis of all six randomised trials. RESULTS: Two hundred fifty randomised and 346 observational cohort patients were studied (27 hospitals). Occult neck disease was found in 19.1% (T1) and 34.7% (T2) patients respectively. Five-year intention-to-treat hazard ratios (HR) were: OS HR = 0.71 (p = 0.18), and DFS HR = 0.66 (p = 0.04). Corresponding per-protocol results were: OS HR = 0.59 (p = 0.054), and DFS HR = 0.56 (p = 0.007). END was effective for small tumours. END patients experienced more facial/neck nerve damage; QoL was largely unaffected. The observational cohort supported the randomised findings. The meta-analysis produced HR OS 0.64 and DFS 0.54 (p < 0.001). CONCLUSION: SEND and the cumulative evidence show that within a generalisable setting oral cancer patients who have an upfront END have a lower risk of death/recurrence, even with small tumours. CLINICAL TRIAL REGISTRATION: NIHR UK Clinical Research Network database ID number: UKCRN 2069 (registered on 17/02/2006), ISCRTN number: 65018995, ClinicalTrials.gov Identifier: NCT00571883.


Assuntos
Carcinoma de Células Escamosas/cirurgia , Procedimentos Cirúrgicos Eletivos/métodos , Neoplasias Bucais/cirurgia , Esvaziamento Cervical/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/patologia , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/epidemiologia , Neoplasias Bucais/patologia , Pescoço/inervação , Pescoço/fisiopatologia , Pescoço/cirurgia , Estadiamento de Neoplasias , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
14.
Am J Physiol Heart Circ Physiol ; 317(4): H867-H876, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31441677

RESUMO

Atherosclerosis is the most common underlying cause of cardiovascular morbidity and mortality worldwide. c-Kit (CD117) is a member of the receptor tyrosine kinase family, which regulates differentiation, proliferation, and survival of multiple cell types. Recent studies have shown that c-Kit and its ligand stem cell factor (SCF) are present in arterial endothelial cells and smooth muscle cells (SMCs). The role of c-Kit in cardiovascular disease remains unclear. The aim of the current study is to determine the role of c-Kit in atherogenesis. For this purpose, atherosclerotic plaques were quantified in c-Kit-deficient mice (KitMut) after they were fed a high-fat diet (HFD) for 16 wk. KitMut mice demonstrated substantially greater atherosclerosis compared with control (KitWT) littermates (P < 0.01). Transplantation of c-Kit-positive bone marrow cells into KitMut mice failed to rescue the atherogenic phenotype, an indication that increased atherosclerosis was associated with reduced arterial c-Kit. To investigate the mechanism, SMC organization and morphology were analyzed in the aorta by histopathology and electron microscopy. SMCs were more abundant, disorganized, and vacuolated in aortas of c-Kit mutant mice compared with controls (P < 0.05). Markers of the "contractile" SMC phenotype (calponin, SM22α) were downregulated with pharmacological and genetic c-Kit inhibition (P < 0.05). The absence of c-Kit increased lipid accumulation and significantly reduced the expression of the ATP-binding cassette transporter G1 (ABCG1) necessary for lipid efflux in SMCs. Reconstitution of c-Kit in cultured KitMut SMCs resulted in increased spindle-shaped morphology, reduced proliferation, and elevated levels of contractile markers, all indicators of their restored contractile phenotype (P < 0.05).NEW & NOTEWORTHY This study describes the novel vasculoprotective role of c-Kit against atherosclerosis and its function in the preservation of the SMC contractile phenotype.


Assuntos
Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Hiperlipidemias/complicações , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aorta/metabolismo , Aorta/ultraestrutura , Doenças da Aorta/etiologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Hiperlipidemias/metabolismo , Camundongos Knockout para ApoE , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/ultraestrutura , Mutação , Miócitos de Músculo Liso/ultraestrutura , Fenótipo , Placa Aterosclerótica , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais , Calponinas
15.
Cell Mol Life Sci ; 75(4): 635-647, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28856381

RESUMO

Secretogranin III (Scg3) is a member of the granin protein family that regulates the biogenesis of secretory granules. Scg3 was recently discovered as an angiogenic factor, expanding its functional role to extrinsic regulation. Unlike many other known angiogenic factors, the pro-angiogenic actions of Scg3 are restricted to pathological conditions. Among thousands of quantified endothelial ligands, Scg3 has the highest binding activity ratio to diabetic vs. healthy mouse retinas and lowest background binding to normal vessels. In contrast, vascular endothelial growth factor binds to and stimulates angiogenesis of both diabetic and control vasculature. Consistent with its role in pathological angiogenesis, Scg3-neutralizing antibodies alleviate retinal vascular leakage in mouse models of diabetic retinopathy and retinal neovascularization in oxygen-induced retinopathy mice. This review summarizes our current knowledge of Scg3 as a regulatory protein of secretory granules, highlights its new role as a highly disease-selective angiogenic factor, and envisions Scg3 inhibitors as "selective angiogenesis blockers" for targeted therapy.


Assuntos
Indutores da Angiogênese/metabolismo , Cromograninas/fisiologia , Retinopatia Diabética , Neovascularização Patológica/genética , Animais , Cromograninas/genética , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Humanos , Camundongos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo , Vesículas Secretórias/patologia
16.
Ann Vasc Surg ; 48: 222-232, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29197603

RESUMO

BACKGROUND: Lack of a reliable hind limb gangrene animal model limits preclinical studies of gangrene, a severe form of critical limb ischemia. We develop a novel mouse hind limb gangrene model to facilitate translational studies. METHODS: BALB/c, FVB, and C57BL/6 mice underwent femoral artery ligation (FAL) with or without administration of NG-nitro-L-arginine methyl ester (L-NAME), an endothelial nitric oxide synthase inhibitor. Gangrene was assessed using standardized ischemia scores ranging from 0 (no gangrene) to 12 (forefoot gangrene). Laser Doppler imaging (LDI) and DiI perfusion quantified hind limb reperfusion postoperatively. RESULTS: BALB/c develops gangrene with FAL-only (n = 11/11, 100% gangrene incidence), showing mean limb ischemia score of 12 on postoperative days (PODs) 7 and 14 with LDI ranging from 0.08 to 0.12 on respective PODs. Most FVB did not develop gangrene with FAL-only (n = 3/9, 33% gangrene incidence) but with FAL and L-NAME (n = 9/9, 100% gangrene incidence). Mean limb ischemia scores for FVB undergoing FAL with L-NAME were significantly higher than for FVB receiving FAL-only. LDI score and capillary density by POD 28 were significantly lower in FVB undergoing FAL with L-NAME. C57BL/6 did not develop gangrene with FAL-only or FAL and L-NAME. CONCLUSIONS: Reproducible murine gangrene models may elucidate molecular mechanisms for gangrene development, facilitating therapeutic intervention.


Assuntos
Artéria Femoral/cirurgia , Isquemia/etiologia , Músculo Esquelético/irrigação sanguínea , NG-Nitroarginina Metil Éster , Doença Arterial Periférica/etiologia , Animais , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Gangrena , Membro Posterior , Isquemia/enzimologia , Isquemia/patologia , Isquemia/fisiopatologia , Ligadura , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Doença Arterial Periférica/enzimologia , Doença Arterial Periférica/patologia , Doença Arterial Periférica/fisiopatologia , Fluxo Sanguíneo Regional , Especificidade da Espécie , Fatores de Tempo
17.
Angiogenesis ; 20(4): 479-492, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28447229

RESUMO

Angiogenic factors play an important role in the pathogenesis of diabetic retinopathy (DR), neovascular age-related macular degeneration (nAMD) and retinopathy of prematurity (ROP). Pleiotrophin, a well-known angiogenic factor, was recently reported to be upregulated in the vitreous fluid of patients with proliferative DR (PDR). However, its pathogenic role and therapeutic potential in ocular vascular diseases have not been defined in vivo. Here using corneal pocket assays, we demonstrated that pleiotrophin induced angiogenesis in vivo. To investigate the pathological role of pleiotrophin we used neutralizing antibody to block its function in multiple in vivo models of ocular vascular diseases. In a mouse model of DR, intravitreal injection of pleiotrophin-neutralizing antibody alleviated diabetic retinal vascular leakage. In a mouse model of oxygen-induced retinopathy (OIR), which is a surrogate model of ROP and PDR, we demonstrated that intravitreal injection of anti-pleiotrophin antibody prevented OIR-induced pathological retinal neovascularization and aberrant vessel tufts. Finally, pleiotrophin-neutralizing antibody ameliorated laser-induced choroidal neovascularization, a mouse model of nAMD, suggesting that pleiotrophin is involved in choroidal vascular disease. These findings suggest that pleiotrophin plays an important role in the pathogenesis of DR with retinal vascular leakage, ROP with retinal neovascularization and nAMD with choroidal neovascularization. The results also support pleiotrophin as a promising target for anti-angiogenic therapy.


Assuntos
Proteínas de Transporte/uso terapêutico , Citocinas/uso terapêutico , Neovascularização Retiniana/tratamento farmacológico , Animais , Proteínas de Transporte/farmacologia , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/patologia , Citocinas/farmacologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Neovascularização Retiniana/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia
19.
Stem Cells ; 34(7): 1846-58, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27145179

RESUMO

Our previous study showed that the therapeutic effects of mesenchymal stem cells (MSCs) transplantation were improved by enhancing migration. MicroRNA-211 (miR-211) can modulate the migratory properties of some cell types by mechanisms that are not fully understood. This study was designed to investigate a possible role for miR-211 in MSC migration, and whether genetic manipulation of miR-211 in MSCs could be used to enhance its beneficial effects of cell transplantation. Transwell assays confirmed that MSCs migration of was significantly impaired by miR-211 knockdown but enhanced by miR-211 overexpression. MiR-211 overexpressing MSCs also exhibited significantly increased cell engraftment in the peri-infarct areas of female rat hearts 2 days after intravenous transplantation of male MSCs as shown by GFP tracking and SYR gene quantification. This conferred a significant decrease in infarct size and improved cardiac performance. By using a loss or gain of gene function approach, we demonstrated that miR-211 targeted STAT5A to modulate MSCs migration, possibly by interacting with MAPK signaling. Furthermore, the beneficial effects of miR-211 overexpression in MSCs were abolished by simultaneous overexpression of STAT5A whereas the negative effects of miR-211 silencing on MSC migration were rescued by simultaneous downregulation of STAT5A. Finally, using ChIP-PCR and luciferase assays, we provide novel evidence that STAT3 can directly bind to promoter elements that activate miR-211 expression. STAT3/miR-211/STAT5A signaling plays a key role in MSCs migration. Intravenous infusion of genetically modified miR-211 overexpressing MSCs conveys enhanced protection from adverse post-MI remodeling compared with unmodified MSCs. Stem Cells 2016;34:1846-1858.


Assuntos
Movimento Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Administração Intravenosa , Animais , Sequência de Bases , Hipóxia Celular/genética , Senescência Celular/genética , Regulação para Baixo/genética , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Ratos Sprague-Dawley
20.
Arterioscler Thromb Vasc Biol ; 36(4): 663-672, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26868211

RESUMO

OBJECTIVE: The efficiency of cell therapy is limited by poor cell survival and engraftment. Here, we studied the effect of the growth hormone-releasing hormone agonist, JI-34, on mesenchymal stem cell (MSC) survival and angiogenic therapy in a mouse model of critical limb ischemia. APPROACH AND RESULTS: Mouse bone marrow-derived MSCs were incubated with or without 10(-8) mol/L JI-34 for 24 hours. MSCs were then exposed to hypoxia and serum deprivation to detect the effect of preconditioning on cell apoptosis, migration, and tube formation. For in vivo tests, critical limb ischemia was induced by femoral artery ligation. After surgery, mice received 50 µL phosphate-buffered saline or with 1×10(6) MSCs or with 1×10(6) JI-34-reconditioned MSCs. Treatment of MSCs with JI-34 improved MSC viability and mobility and markedly enhanced their capability to promote endothelial tube formation in vitro. These effects were paralleled by an increased phosphorylation and nuclear translocation of signal transducer and activator of transcription 3. In vivo, JI-34 pretreatment enhanced the engraftment of MSCs into ischemic hindlimb muscles and augmented reperfusion and limb salvage compared with untreated MSCs. Significantly more vasculature and proliferating CD31(+) and CD34(+) cells were detected in ischemic muscles that received MSCs treated with JI-34. CONCLUSIONS: Our studies demonstrate a novel role for JI-34 to markedly improve therapeutic angiogenesis in hindlimb ischemia by increasing the viability and mobility of MSCs. These findings support additional studies to explore the full potential of growth hormone-releasing hormone agonists to augment cell therapy in the management of ischemia.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/análogos & derivados , Hormônio Liberador de Hormônio do Crescimento/agonistas , Isquemia/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Fragmentos de Peptídeos/farmacologia , Transporte Ativo do Núcleo Celular , Animais , Antígenos CD34/metabolismo , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Membro Posterior , Isquemia/metabolismo , Isquemia/fisiopatologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores de Neuropeptídeos/agonistas , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/agonistas , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA