Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Phys Chem Chem Phys ; 25(25): 16727-16734, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37161538

RESUMO

Polymorphism and phase transitions in sodium diuranate, Na2U2O7, are investigated with density functional perturbation theory (DFPT). Thermal properties of crystalline α-, ß- and γ-Na2U2O7 polymorphs are predicted from DFPT phonon calculations, i.e., the first time for the high-temperature γ-Na2U2O7 phase (R3̄m symmetry). The standard molar isochoric heat capacities predicted within the quasi-harmonic approximation are for P21/a α-Na2U2O7 and C2/m ß-Na2U2O7, respectively. Gibbs free energy calculations reveal that α-Na2U2O7 (P21/a) and ß-Na2U2O7 (C2/m) are almost energetically degenerate at low temperature, with ß-Na2U2O7 becoming slightly more stable than α-Na2U2O7 as temperature increases. These findings are consistent with XRD data showing a mixture of α and ß phases after cooling of γ-Na2U2O7 to room temperature and the observation of a sluggish α → ß phase transition above ca. 600 K. A recently observed α-Na2U2O7 structure with P21 symmetry is also shown to be metastable at low temperature. Based on Gibbs free energy, no direct ß â†’ γ solid-solid phase transition is predicted at high temperature, although some experiments reported the existence of such phase transition around 1348 K. This, along with recent experiments, suggests the occurrence of a multi-step process consisting of initial ß-phase decomposition, followed by recrystallization into γ-phase as temperature increases.

2.
Inorg Chem ; 59(24): 18407-18419, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33296192

RESUMO

The synthesis, structure, and thermal stability of the periodate double perovskites A2NaIO6 (A= Ba, Sr, Ca) were investigated in the context of potential application for the immobilization of radioiodine. A combination of X-ray diffraction and neutron diffraction, Raman spectroscopy, and DFT simulations were applied to determine accurate crystal structures of these compounds and understand their relative stability. The compounds were found to exhibit rock-salt ordering of Na and I on the perovskite B-site; Ba2NaIO6 was found to adopt the Fm-3m aristotype structure, whereas Sr2NaIO6 and Ca2NaIO6 adopt the P21/n hettotype structure, characterized by cooperative octahedral tilting. DFT simulations determined the Fm-3m and P21/n structures of Ba2NaIO6 to be energetically degenerate at room temperature, whereas diffraction and spectroscopy data evidence only the presence of the Fm-3m phase at room temperature, which may imply an incipient phase transition for this compound. The periodate double perovskites were found to exhibit remarkable thermal stability, with Ba2NaIO6 only decomposing above 1050 °C in air, which is apparently the highest recorded decomposition temperature so far recorded for any iodine bearing compound. As such, these compounds offer some potential for application in the immobilization of iodine-129, from nuclear fuel reprocessing, with an iodine incorporation rate of 25-40 wt%. The synthesis of these compounds, elaborated here, is also compatible with both current conventional and future advanced processes for iodine recovery from the dissolver off-gas.

3.
Phys Chem Chem Phys ; 21(46): 25569-25576, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31576855

RESUMO

The relationship between the structure and thermodynamic properties of schoepite, an important uranyl phase with formula [(UO2)8O2(OH)12]·12H2O formed upon corrosion of UO2, has been investigated within the framework of density functional perturbation theory (DFPT). Experimental crystallographic lattice parameters are well reproduced in this study using standard DFT. Phonon calculations within the quasi-harmonic approximation predict standard molar entropy and isobaric heat capacity of S0 = 179.60 J mol-1 K-1 and C0P = 157.4 J mol-1 K-1 at 298.15 K, i.e., ∼6% and ∼4% larger than existing DFPT-D2 calculations. The computed variation of the standard molar isobaric heat capacity with water content from schoepite (UO3·xH2O, x = 2.25) to dehydrated schoepite (x = 1) is predicted to be essentially linear along isotherms ranging from 100 to 500 K. These findings have important implications for the dehydration of layered uranyl corrosion phases and hygroscopic materials.

4.
Inorg Chem ; 57(5): 2432-2437, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29424535

RESUMO

Using combined experimental and computational approaches, we show that at 43 GPa and 1300 K gallium phosphide adopts the super- Cmcm structure, here indicated with its Pearson notation oS24. First-principles enthalpy calculations demonstrate that this structure is more thermodynamically stable above ∼20 GPa than previously proposed polymorphs. In contrast to other polymorphs, the oS24 phase shows a strong bonding differentiation and distorted fivefold coordination geometries of both P atoms. The shortest bond of the phase is a single covalent P-P bond measuring 2.171(11) Šat synthesis pressure. Phosphorus dimerization in GaP sheds light on the nature of the super- Cmcm phase and provides critical new insights into the high-pressure polymorphism of octet semiconductors. Bond directionality and anisotropy explain the relatively low symmetry of this high-pressure phase.

5.
Phys Chem Chem Phys ; 20(28): 18949-18956, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29868652

RESUMO

X-ray induced damage has been known for decades and has largely been viewed as a tremendous nuisance. We, on the other hand, harness the highly ionizing and penetrating properties of hard X-rays to initiate novel decomposition and synthetic chemistry. Here, we show that powdered cesium oxalate monohydrate pressurized to ≤0.5 GPa and irradiated with X-rays of energies near the cesium K-edge undergoes molecular and structural transformations with one of the final products exhibiting a new type of bcc crystal structure that has previously not been observed. Additionally, based on cascades of ultrafast electronic relaxation steps triggered by the absorption of one X-ray photon, we propose a model explaining the X-ray induced damage of multitype bounded matter. As X-rays are ubiquitous, these results show promise in the preparation of novel compounds and novel structures that are inaccessible via conventional methods. They may offer insight into the formation of complex organic compounds in outer space.

6.
Phys Chem Chem Phys ; 18(38): 26816-26826, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27711607

RESUMO

The structure-property relationships of bulk CeO2 and Ce2O3 have been investigated using AM05 and PBEsol exchange-correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+U) and density functional perturbation theory (DFPT+U). Compared with conventional PBE+U, RPBE+U, PW91+U and LDA+U functionals, AM05+U and PBEsol+U describe experimental crystalline parameters and properties of CeO2 and Ce2O3 with superior accuracy, especially when +U is chosen close to its value derived by the linear-response approach. The present findings call for a reexamination of some of the problematic oxide materials featuring strong f- and d-electron correlation using AM05+U and PBEsol+U.

7.
J Phys Chem A ; 119(39): 9996-10006, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26348875

RESUMO

Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm(-1) that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm(-1). The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO2(2+) sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. The phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with only one in the hexahydrate.

8.
Proc Natl Acad Sci U S A ; 108(42): 17281-5, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21969537

RESUMO

Phases of the iron-oxygen binary system are significant to most scientific disciplines, directly affecting planetary evolution, life, and technology. Iron oxides have unique electronic properties and strongly interact with the environment, particularly through redox reactions. The iron-oxygen phase diagram therefore has been among the most thoroughly investigated, yet it still holds striking findings. Here, we report the discovery of an iron oxide with formula Fe(4)O(5), synthesized at high pressure and temperature. The previously undescribed phase, stable from 5 to at least 30 GPa, is recoverable to ambient conditions. First-principles calculations confirm that the iron oxide here described is energetically more stable than FeO + Fe(3)O(4) at pressure greater than 10 GPa. The calculated lattice constants, equation of states, and atomic coordinates are in excellent agreement with experimental data, confirming the synthesis of Fe(4)O(5). Given the conditions of stability and its composition, Fe(4)O(5) is a plausible accessory mineral of the Earth's upper mantle. The phase has strong ferrimagnetic character comparable to magnetite. The ability to synthesize the material at accessible conditions and recover it at ambient conditions, along with its physical properties, suggests a potential interest in Fe(4)O(5) for technological applications.

9.
J Am Chem Soc ; 135(42): 15955-62, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24053573

RESUMO

A second polymorph of technetium dichloride, ß-TcCl2, has been synthesized from the reaction of Tc metal and chlorine in a sealed tube at 450 °C. The crystallographic structure and physical properties of ß-TcCl2 have been investigated. The structure of ß-TcCl2 consists of infinite chains of face sharing [Tc2Cl8] units; within a chain, the Tc≡Tc vectors of two adjacent [Tc2Cl8] units are ordered in the long-range where perpendicular and/or parallel arrangement of Tc≡Tc vectors yields a modulated structure. Resistivity and Seebeck measurements performed on a ß-TcCl2 single crystal indicate the compound to be a p-type semiconductor while a magnetic susceptibility measurement shows technetium dichloride to be diamagnetic. A band gap of 0.12(2) eV was determined by reflectance spectroscopy measurements. Theoretical calculations at the density functional level were utilized for the investigation of other possible stable forms of TcCl2.


Assuntos
Elétrons , Compostos de Tecnécio/química , Cristalografia por Raios X , Fenômenos Magnéticos , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície , Temperatura
10.
Inorg Chem ; 52(2): 761-76, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23270453

RESUMO

Complexations of lanthanide ions with 5,6-dialkyl-2,6-bis(1,2,4-triazin-3-yl)pyridine [RBTP; R = H (HBTP), methyl (MeBTP), ethyl (EtBTP)] derivatives have been studied in the acetonitrile medium by electrospray ionization mass spectrometry, time-resolved laser-induced fluorescence spectroscopy, and UV-vis spectrophotometric titration. These studies were carried out in the absence and presence of a nitrate ion in order to understand the effect of the nitrate ion on their complexation behavior, particularly in the poor solvating acetonitrile medium where strong nitrate complexation of hard lanthanide ions is expected. Consistent results from all three techniques undoubtedly show the formation of lower stoichiometric complexes in the presence of excess nitrate ion. This kind of nitrate ion effect on the speciation of Ln(3+) complexes of RBTP ligands has not so far been reported in the literature. Different Am(3+) and Ln(3+) complexes were observed with RBTP ligands in the presence of 0.01 M tetramethylammonium nitrate, and their stability constant values are determined using UV-vis spectrophotometric titrations. The formation of higher stoichiometric complexes and higher stability constants for Am(3+) compared to Ln(3+) ions indicates the selectivity of these classes of ligands. A single-crystal X-ray diffraction (XRD) study of europium(III) complexes shows the formation of a dimeric complex with HBTP and a monomeric complex with EtBTP, whereas MeBTP forms both the dimeric and monomeric complexes. Density functional theory calculations confirm the findings from single-crystal XRD and also predict the structures of Eu(3+) and Am(3+) complexes observed experimentally.

11.
J Am Chem Soc ; 134(6): 3111-9, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22280303

RESUMO

A low-temperature fluoride route was utilized to synthesize neptunium mononitride, NpN. Through the development of this process, two new neptunium nitride species, NpN(2) and Np(2)N(3), were identified. The NpN(2) and Np(2)N(3) have crystal structures isomorphous to those of UN(2) and U(2)N(3), respectively. NpN(2) crystallizes in a face-centered cubic CaF(2)-type structure with a space group of Fm3m and a refined lattice parameter of 5.3236(1) Å. The Np(2)N(3) adopts the body-centered cubic Mn(2)O(3)-type structure with a space group of Ia3. Its refined lattice parameter is 10.6513(4) Å. The NpN synthesis at temperatures ≤900 °C using the fluoride route discussed here was also demonstrated. Previous computational studies of the neptunium nitride system have focused exclusively on the NpN phase because no evidence was reported experimentally on the presence of NpN(x) systems. Here, the crystal structures of NpN(2) and Np(2)N(3) are discussed for the first time, confirming the experimental results by density functional calculations (DFT). These DFT calculations were performed within the local-density approximation (LDA+U) and the generalized-gradient approximation (GGA+U) corrected with an effective Hubbard parameter to account for the strong on-site Coulomb repulsion between Np 5f electrons. The effects of the spin-orbit coupling in the GGA+U calculations have also been investigated for NpN(2) and NpN.

12.
Inorg Chem ; 51(9): 4915-7, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22486315

RESUMO

A second polymorph of technetium trichloride, ß-TcCl(3), has been identified from the reaction between Tc metal and Cl(2) gas. The structure of ß-TcCl(3) consists of infinite layers of edge-sharing octahedra, similar to its MoCl(3) and RuCl(3) analogues. The Tc-Tc distance [2.861(3) Å] between adjacent octahedra is indicative of metal-metal bonding. Earlier theoretical work predicted that ß-TcCl(3) is less stable than α-TcCl(3). In agreement with the prediction, ß-TcCl(3) slowly transforms into α-TcCl(3) (Tc(3)Cl(9)) over 16 days at 280 °C.

13.
Inorg Chem ; 51(9): 4965-71, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22497564

RESUMO

The structure of ß-molybdenum dichloride is compared with that of TcCl(2) using EXAFS spectroscopy. For TcCl(2), the Tc atom is surrounded by Tc atoms at 2.13(2), 3.45(3), 3.79(4), and 4.02(4) Å. For ß-MoCl(2), the Mo is surrounded by Mo atoms at 2.21(2), 2.91(3), and 3.83(4) Å. The latter distances are consistent with the presence of an [Mo(4)Cl(12)] unit in the solid state, one constituted by two triply Mo-Mo-bonded [Mo(2)Cl(8)] units. First-principles calculations show that ß-MoCl(2) with the TcCl(2) "structure type" is less stable than α-MoCl(2) (Mo(6)Cl(12)) or [Mo(4)Cl(12)] edge-sharing clusters.

14.
J Am Chem Soc ; 133(23): 8814-7, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21574580

RESUMO

Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc(2)Cl(8)] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) Å, a distance consistent with the presence of a Tc≡Tc triple bond that is also supported by electronic structure calculations.


Assuntos
Cloretos/química , Halogênios/química , Compostos de Tecnécio/química , Modelos Moleculares , Conformação Molecular
15.
Inorg Chem ; 50(3): 1039-46, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21190332

RESUMO

Trinuclear transition-metal complexes such as Re(3)X(9) (X = Cl, Br, I), with their uniquely featured structure among metal halides, have posed intriguing questions related to multicenter electron delocalization for several decades. Here we report a comprehensive study of the technetium halide clusters [Tc(3)(µ-X)(3)X(6)](0/1-/2-) (X = F, Cl, Br, I), isomorphous with their rhenium congeners, predicted from density functional theory calculations. The chemical bonding and aromaticity in these clusters are analyzed using the recently developed adaptive natural density partitioning method, which indicates that only [Tc(3)X(9)](2-) clusters exhibit aromatic character, stemming from a d-orbital-based π bond delocalized over the three metal centers. We also show that standard methods founded on the nucleus-independent chemical shift concept incorrectly predict the neutral Tc(3)X(9) clusters to be aromatic.

16.
J Chem Phys ; 134(21): 214501, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21663361

RESUMO

We investigate atomistic mechanisms governing hydrogen release and uptake processes in ammonia borane (AB) within the framework of the density functional theory. In order to determine the most favorable pathways for the thermal inter-conversion between AB and polyaminoborane plus H(2), we calculate potential energy surfaces for the corresponding reactions. We explore the possibility of enclosing AB in narrow carbon nanotubes to limit the formation of undesirable side-products such as the cyclic compound borazine, which hinder subsequent rehydrogenation of the system. We also explore the effects of nanoconfinement on the possible rehydrogenation pathways of AB and suggest the use of photoexcitation as a means to achieve dehydrogenation of AB at low temperatures.

17.
J Am Chem Soc ; 132(45): 15864-5, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-20977207

RESUMO

Technetium trichloride has been synthesized by reaction of Tc(2)(O(2)CCH(3))(4)Cl(2) with HCl(g) at 300 °C. The mechanism of formation mimics the one described earlier in the literature for rhenium. Tc(2)(O(2)CCH(3))(2)Cl(4) [P1̅; a = 6.0303(12) Å, b = 6.5098(13) Å, c = 8.3072(16) Å, α = 112.082(2)°, ß = 96.667(3)°, γ = 108.792(3)°; Tc-Tc = 2.150(1) Å] is formed as an intermediate in the reaction at 100 °C. Technetium trichloride is formed above 250 °C and is isostructural with its rhenium homologue. The structure consists of Tc(3)Cl(9) clusters [R3̅m; a = b = 10.1035(19) Å, c = 20.120(8) Å], and the Tc-Tc separation is 2.444(1) Å. Calculations on TcX(3) (X = Cl, Br) have confirmed the stability of TcCl(3) and suggest the existence of a polymorph of TcBr(3) with the ReBr(3) structure.

18.
Inorg Chem ; 49(4): 1465-70, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20055471

RESUMO

Representative models of the different geometries observed for uranyl complexes with fully deprotonated p-R-hexahomotrioxacalix[3]arene (R = tert-Bu, Me) ligands, among which is the rare trigonal geometry, have been investigated using all-electron scalar relativistic density functional theory (DFT). Optimized structures of complexes incorporating triethylammonium (HNEt3+) and 4-methylpiperidinium (HMePi+) cations are in close agreement with experimental crystal diffraction data. Possible explanations for the structural differences between these uranyl complexes are discussed in terms of varying degrees of bonding between uranium and oxygen atoms from the ether and phenoxide groups. In particular, molecular orbital analysis highlights the central role of 5f-2p hybridization in the U-O bonding.

19.
Inorg Chem ; 49(4): 1433-8, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20085255

RESUMO

The structural properties of Tc-Zr binary alloys were investigated using combined experimental and computational approaches. The Tc(2)Zr and Tc(6)Zr samples were characterized by X-ray diffraction analysis, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. Our XRD results show that Tc(6)Zr crystallizes in the cubic alpha-Mn-type structure (I43m space group) with a variable stoichiometry of Tc(6.25-x)Zr (0 < x < 1.45), and Tc(2)Zr has a hexagonal crystal lattice with a MgZn(2)-type structure (P6(3)/mmc space group). Rietveld analysis of the powder XRD patterns and density functional calculations of the "Tc(6)Zr" phase show a linear increase of the lattice parameter when moving from Tc(6.25)Zr to Tc(4..80)Zr compositions, similar to previous observations in the Re-Zr system. This variation of the composition of "Tc(6)Zr" is explained by the substitution of Zr for Tc atoms in the 2a site of the alpha-Mn-type structure. These results suggest that the width of the "Tc(6)Zr" phase needs to be included when constructing the Tc-Zr phase diagram. The bonding character and stability of the various Tc-Zr phases were also investigated from first principles. Calculations indicate that valence and conduction bands near the Fermi level are dominated by electrons occupying the 4d orbital. In particular, the highest-lying molecular orbitals of the valence band of Tc(2)Zr are composed of d-d sigma bonds, oriented along the normal axis of the (110) plane and linking the Zr network to the Tc framework. Strong d-d bonds stabilizing the Tc framework in the hexagonal unit cell are also in the valence band. In the cubic structures of Tc-Zr phases, only Tc 4d orbitals are found to significantly contribute near the Fermi level.

20.
J Phys Condens Matter ; 32(8): 085401, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31741462

RESUMO

Classical molecular dynamics (MD) simulations were performed to provide a conceptual understanding of the amorphous-crystalline interface for a candidate negative thermal expansion (NTE) material, ZrW2O8. Simulations of pressure-induced amorphization at 300 K indicate that an amorphous phase forms at pressures of 10 GPa and greater, and this phase persists when the pressure is subsequently decreased to 1 bar. However, the crystalline phase is recovered when the slightly distorted 5 GPa phase is relaxed to 1 bar. Simulations were also performed on a two-phase model consisting of the high-pressure amorphous phase in direct contact with the crystalline phase. Upon equilibration at 300 K and 1 bar, the crystalline phase remains unchanged beyond a thin layer of disrupted structure at the crystalline-amorphous interface. Differences in local atomic structure at the interface are quantified from the simulation trajectories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA