Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Chem ; 70(1): 250-260, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37624932

RESUMO

BACKGROUND: Molecular brain tumor diagnosis is usually dependent on tissue biopsies or resections. This can pose several risks associated with anesthesia or neurosurgery, especially for lesions in the brain stem or other difficult-to-reach anatomical sites. Apart from initial diagnosis, tumor progression, recurrence, or the acquisition of novel genetic alterations can only be proven by re-biopsies. METHODS: We employed Nanopore sequencing on cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) and analyzed copy number variations (CNV) and global DNA methylation using a random forest classifier. We sequenced 129 samples with sufficient DNA. These samples came from 99 patients and encompassed 22 entities. Results were compared to clinical diagnosis and molecular analysis of tumor tissue, if available. RESULTS: 110/129 samples were technically successful, and 50 of these contained detectable circulating tumor DNA (ctDNA) by CNV or methylation profiling. ctDNA was detected in samples from patients with progressive disease but also from patients without known residual disease. CNV plots showed diagnostic and prognostic alterations, such as C19MC amplifications in embryonal tumors with multilayered rosettes or Chr.1q gains and Chr.6q losses in posterior fossa group A ependymoma, respectively. Most CNV profiles mirrored the profiles of the respective tumor tissue. DNA methylation allowed exact classification of the tumor in 22/110 cases and led to incorrect classification in 2/110 cases. Only 5/50 samples with detected ctDNA contained tumor cells detectable through microscopy. CONCLUSIONS: Our results suggest that Nanopore sequencing data of cfDNA from CSF samples may be a promising approach for initial brain tumor diagnostics and an important tool for disease monitoring.


Assuntos
Neoplasias Encefálicas , Ácidos Nucleicos Livres , Sequenciamento por Nanoporos , Humanos , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Mutação
2.
Acta Neuropathol ; 147(1): 24, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265522

RESUMO

The diagnosis of ependymoma has moved from a purely histopathological review with limited prognostic value to an integrated diagnosis, relying heavily on molecular information. However, as the integrated approach is still novel and some molecular ependymoma subtypes are quite rare, few studies have correlated integrated pathology and clinical outcome, often focusing on small series of single molecular types. We collected data from 2023 ependymomas as classified by DNA methylation profiling, consisting of 1736 previously published and 287 unpublished methylation profiles. Methylation data and clinical information were correlated, and an integrated model was developed to predict progression-free survival. Patients with EPN-PFA, EPN-ZFTA, and EPN-MYCN tumors showed the worst outcome with 10-year overall survival rates of 56%, 62%, and 32%, respectively. EPN-PFA harbored chromosome 1q gains and/or 6q losses as markers for worse survival. In supratentorial EPN-ZFTA, a combined loss of CDKN2A and B indicated worse survival, whereas a single loss did not. Twelve out of 200 EPN-ZFTA (6%) were located in the posterior fossa, and these tumors relapsed or progressed even earlier than supratentorial tumors with a combined loss of CDKN2A/B. Patients with MPE and PF-SE, generally regarded as non-aggressive tumors, only had a 10-year progression-free survival of 59% and 65%, respectively. For the prediction of the 5-year progression-free survival, Kaplan-Meier estimators based on the molecular subtype, a Support Vector Machine based on methylation, and an integrated model based on clinical factors, CNV data, and predicted methylation scores achieved balanced accuracies of 66%, 68%, and 73%, respectively. Excluding samples with low prediction scores resulted in balanced accuracies of over 80%. In sum, our large-scale analysis of ependymomas provides robust information about molecular features and their clinical meaning. Our data are particularly relevant for rare and hardly explored tumor subtypes and seemingly benign variants that display higher recurrence rates than previously believed.


Assuntos
Ependimoma , Humanos , Intervalo Livre de Progressão , Processamento de Proteína Pós-Traducional
3.
Acta Neuropathol ; 147(1): 22, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265489

RESUMO

Ependymomas encompass multiple clinically relevant tumor types based on localization and molecular profiles. Tumors of the methylation class "spinal ependymoma" (SP-EPN) represent the most common intramedullary neoplasms in children and adults. However, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical relevance have been described in a large, epigenetically defined series. Transcriptomic (n = 72), epigenetic (n = 225), genetic (n = 134), and clinical data (n = 112) were integrated for a detailed molecular overview on SP-EPN. Additionally, we mapped SP-EPN transcriptomes to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. The integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord revealed that SP-EPN display the highest similarities to mature adult ependymal cells. Unsupervised hierarchical clustering of transcriptomic data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype A tumors primarily carried previously known germline or sporadic NF2 mutations together with 22q loss (bi-allelic NF2 loss), resulting in decreased NF2 expression. Furthermore, they more often presented as multilocular disease and demonstrated a significantly reduced progression-free survival as compared to SP-EP subtype B. In contrast, subtype B predominantly contained samples without NF2 mutation detected in sequencing together with 22q loss (monoallelic NF2 loss). These tumors showed regular NF2 expression but more extensive global copy number alterations. Based on integrated molecular profiling of a large multi-center cohort, we identified two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.


Assuntos
Ependimoma , Neoplasias da Medula Espinal , Adulto , Criança , Humanos , Transcriptoma , Perfilação da Expressão Gênica , Mutação , Epigênese Genética
4.
Nature ; 555(7697): 469-474, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29539639

RESUMO

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


Assuntos
Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Metilação de DNA , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Sistema Nervoso Central/classificação , Neoplasias do Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Aprendizado de Máquina não Supervisionado , Adulto Jovem
5.
Neuropathol Appl Neurobiol ; : e12949, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112165

RESUMO

AIM: Pilocytic astrocytomas (PA) in adults are rare and may be challenging to identify based only on histomorphology. Compared to their paediatric counterparts, they are reportedly molecularly more diverse and associated with a worse prognosis. We aimed to describe the characteristics of adult PAs more precisely by comprehensively profiling a series of 79 histologically diagnosed adult cases (≥18 years). METHODS: We performed global DNA methylation profiling and DNA and RNA panel sequencing, and integrated the results with clinical data. We further compared the molecular characteristics of adult and paediatric PAs that had a significant match to one of the established PA methylation classes in the Heidelberg brain tumour classifier. RESULTS: The mean age in our cohort was 33 years, and 43% of the tumours were located supratentorially. Based on methylation profiling, only 39% of the cases received a significant match to a PA methylation class. Sixteen per cent matched a different tumour type and 45% had a Heidelberg classifier score <0.9 with an affiliation to diverse established methylation classes in t-SNE analyses. Although the KIAA1549::BRAF fusion was found in 98% of paediatric PAs, this was true for only 27% of histologically defined and 55% of adult PAs defined by methylation profiling. CONCLUSIONS: A particularly high fraction of adult tumours with histological features of PA do not match current PA methylation classes, indicating ambiguous histology and an urgent need for molecular profiling. Moreover, even in adult PAs with a match to a PA methylation class, the distribution of genetic drivers differs significantly from their paediatric counterparts (p<0.01).

6.
Neuropathol Appl Neurobiol ; 49(1): e12866, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36519297

RESUMO

AIM: Analysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients with neurological diseases and includes differential cell typing. The current gold standard is based on microscopic examination by specialised technicians and neuropathologists, which is time-consuming, labour-intensive and subjective. METHODS: We, therefore, developed an image analysis approach based on expert annotations of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically relevant categories and trained a multiclass convolutional neural network (CNN). RESULTS: The CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By using explainable artificial intelligence (XAI), we demonstrate that the CNN identified meaningful cellular substructures in CSF cells recapitulating human pattern recognition. Based on the evaluation of 511 cells selected from 12 different CSF samples, we validated the CNN by comparing it with seven board-certified neuropathologists blinded for clinical information. Inter-rater agreement between the CNN and the ground truth was non-inferior (Krippendorff's alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff's alpha 0.72, range 0.56-0.81). The CNN assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in 10 out of 11 clinical samples, compared with 7-11 out of 11 by human raters. CONCLUSIONS: Our approach provides the basis to overcome current limitations in automated cell classification for routine diagnostics and demonstrates how a visual explanation framework can connect machine decision-making with cell properties and thus provide a novel versatile and quantitative method for investigating CSF manifestations of various neurological diseases.


Assuntos
Aprendizado Profundo , Humanos , Inteligência Artificial , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
7.
Acta Neuropathol ; 145(1): 49-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36437415

RESUMO

Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0-14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/ß-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.


Assuntos
Neoplasias do Sistema Nervoso Central , Tumores Neuroectodérmicos Primitivos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Proteínas de Ciclo Celular/genética , Neoplasias do Sistema Nervoso Central/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Tumores Neuroectodérmicos Primitivos/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt/genética
8.
Neuropathol Appl Neurobiol ; 48(7): e12847, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35977725

RESUMO

AIMS: Anaplastic ganglioglioma is a rare tumour, and diagnosis has been based on histological criteria. The 5th edition of the World Health Organization Classification of Tumours of the Central Nervous System (CNS WHO) does not list anaplastic ganglioglioma as a distinct diagnosis due to lack of molecular data in previous publications. We retrospectively compiled a cohort of 54 histologically diagnosed anaplastic gangliogliomas to explore whether the molecular profiles of these tumours represent a separate type or resolve into other entities. METHODS: Samples were subjected to histological review, desoxyribonucleic acid (DNA) methylation profiling and next-generation sequencing. Morphological and molecular data were summarised to an integrated diagnosis. RESULTS: The majority of tumours designated as anaplastic gangliogliomas resolved into other CNS WHO diagnoses, most commonly pleomorphic xanthoastrocytoma (16/54), glioblastoma, isocitrate dehydrogenase protein (IDH) wild type and diffuse paediatric-type high-grade glioma, H3 wild type and IDH wild type (11 and 2/54), followed by low-grade glial or glioneuronal tumours including pilocytic astrocytoma, dysembryoplastic neuroepithelial tumour and diffuse leptomeningeal glioneuronal tumour (5/54), IDH mutant astrocytoma (4/54) and others (6/54). A subset of tumours (10/54) was not assignable to a CNS WHO diagnosis, and common molecular profiles pointing to a separate entity were not evident. CONCLUSIONS: In summary, we show that tumours histologically diagnosed as anaplastic ganglioglioma comprise a wide spectrum of CNS WHO tumour types with different prognostic and therapeutic implications. We therefore suggest assigning this designation with caution and recommend comprehensive molecular workup.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Ganglioglioma , Glioma , Criança , Humanos , Ganglioglioma/patologia , Estudos Retrospectivos , Glioma/patologia , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias do Sistema Nervoso Central/patologia , Isocitrato Desidrogenase
9.
Neuropathol Appl Neurobiol ; 47(3): 406-414, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33336421

RESUMO

AIMS: KIAA1549-BRAF fusions occur in certain brain tumours and provide druggable targets due to a constitutive activation of the MAP-kinase pathway. We introduce workflows for calling the KIAA1549-BRAF fusion from DNA methylation array-derived copy number as well as DNA panel sequencing data. METHODS: Copy number profiles were analysed by automated screening and visual verification of a tandem duplication on chromosome 7q34, indicative of the KIAA1549-BRAF fusion. Pilocytic astrocytomas of the ICGC cohort with known fusion status were used for validation. KIAA1549-BRAF fusions were called from DNA panel sequencing data using the fusion callers Manta, Arriba with modified filtering criteria and deFuse. We screened DNA methylation and panel sequencing data of 7790 specimens from brain tumour and sarcoma entities. RESULTS: We identified the fusion in 337 brain tumours with both DNA methylation and panel sequencing data. Among these, we detected the fusion from copy number data in 84% and from DNA panel sequencing data in more than 90% using Arriba with modified filters. While in 74% the KIAA1549-BRAF fusion was detected from both methylation array-derived copy number and panel sequencing data, in 9% it was detected from copy number data only and in 16% from panel data only. The fusion was almost exclusively found in pilocytic astrocytomas, diffuse leptomeningeal glioneuronal tumours and high-grade astrocytomas with piloid features. CONCLUSIONS: The KIAA1549-BRAF fusion can be reliably detected from either DNA methylation array or DNA panel data. The use of both methods is recommended for the most sensitive detection of this diagnostically and therapeutically important marker.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Fusão Oncogênica/análise , Análise de Sequência de DNA/métodos , Biomarcadores Tumorais/genética , Metilação de DNA , Dosagem de Genes , Humanos
10.
Acta Neuropathol ; 141(1): 85-100, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216206

RESUMO

Diffuse IDH-mutant astrocytoma mostly occurs in adults and carries a favorable prognosis compared to IDH-wildtype malignant gliomas. Acquired mismatch repair deficiency is known to occur in recurrent IDH-mutant gliomas as resistance mechanism towards alkylating chemotherapy. In this multi-institutional study, we report a novel epigenetic group of 32 IDH-mutant gliomas with proven or suspected hereditary mismatch repair deficiency. None of the tumors exhibited a combined 1p/19q deletion. These primary mismatch repair-deficient IDH-mutant astrocytomas (PMMRDIA) were histologically high-grade and were mainly found in children, adolescents and young adults (median age 14 years). Mismatch repair deficiency syndromes (Lynch or Constitutional Mismatch Repair Deficiency Syndrom (CMMRD)) were clinically diagnosed and/or germline mutations in DNA mismatch repair genes (MLH1, MSH6, MSH2) were found in all cases, except one case with a family and personal history of colon cancer and another case with MSH6-deficiency available only as recurrent tumor. Loss of at least one of the mismatch repair proteins was detected via immunohistochemistry in all, but one case analyzed. Tumors displayed a hypermutant genotype and microsatellite instability was present in more than half of the sequenced cases. Integrated somatic mutational and chromosomal copy number analyses showed frequent inactivation of TP53, RB1 and activation of RTK/PI3K/AKT pathways. In contrast to the majority of IDH-mutant gliomas, more than 60% of the samples in our cohort presented with an unmethylated MGMT promoter. While the rate of immuno-histochemical ATRX loss was reduced, variants of unknown significance were more frequently detected possibly indicating a higher frequency of ATRX inactivation by protein malfunction. Compared to reference cohorts of other IDH-mutant gliomas, primary mismatch repair-deficient IDH-mutant astrocytomas have by far the worst clinical outcome with a median survival of only 15 months irrespective of histological or molecular features. The findings reveal a so far unknown entity of IDH-mutant astrocytoma with high prognostic relevance. Diagnosis can be established by aligning with the characteristic DNA methylation profile, by DNA-sequencing-based proof of mismatch repair deficiency or immunohistochemically demonstrating loss-of-mismatch repair proteins.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Reparo de Erro de Pareamento de DNA/genética , Isocitrato Desidrogenase/genética , Adolescente , Adulto , Astrocitoma/diagnóstico , Neoplasias Encefálicas/diagnóstico , Criança , Metilação de DNA , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Instabilidade de Microssatélites , Mutação/genética , Recidiva Local de Neoplasia , Prognóstico , Transdução de Sinais/genética , Análise de Sobrevida , Proteína Nuclear Ligada ao X/genética , Adulto Jovem
11.
Development ; 144(22): 4125-4136, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061636

RESUMO

During CNS development, interneuron precursors have to migrate extensively before they integrate in specific microcircuits. Known regulators of neuronal motility include classical neurotransmitters, yet the mechanisms that assure interneuron dispersal and interneuron/projection neuron matching during histogenesis remain largely elusive. We combined time-lapse video microscopy and electrophysiological analysis of the nascent cerebellum of transgenic Pax2-EGFP mice to address this issue. We found that cerebellar interneuronal precursors regularly show spontaneous postsynaptic currents, indicative of synaptic innervation, well before settling in the molecular layer. In keeping with the sensitivity of these cells to neurotransmitters, ablation of synaptic communication by blocking vesicular release in acute slices of developing cerebella slows migration. Significantly, abrogation of exocytosis primarily impedes the directional persistence of migratory interneuronal precursors. These results establish an unprecedented function of the early synaptic innervation of migrating neuronal precursors and demonstrate a role for synapses in the regulation of migration and pathfinding.


Assuntos
Movimento Celular , Interneurônios/citologia , Células-Tronco Neurais/citologia , Sinapses/metabolismo , Animais , Forma Celular , Cerebelo/citologia , Cerebelo/ultraestrutura , Fenômenos Eletrofisiológicos , Feminino , Glutamatos/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Fator de Transcrição PAX2/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Acta Neuropathol ; 139(2): 305-318, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31679042

RESUMO

According to the WHO classification, ependymal tumors are classified as subependymomas, myxopapillary ependymomas, classic ependymomas, anaplastic ependymomas, and RELA-fusion-positive ependymomas (RELA-EPN). Among classic ependymomas, the WHO defines rare histological variants, i.e., the clear cell, papillary, and tanycytic ependymoma. In parallel, global DNA methylation patterns distinguish nine molecular groups, some of which tightly overlap with histopathological subgroups. However, the match of the aforementioned histological variants to DNA methylation classes remains unclear. We analyzed histomorphology, clinical parameters, and global DNA methylation of tumors with the initial histological diagnoses of tanycytic (n = 12), clear cell (n = 14), or papillary ependymoma (n = 19). Forty percent of these tumors did not match to the epigenetic profile of ependymomas, using a previously published DNA methylation-based classifier for brain tumors. Instead, they were classified as low-grade glioma (n = 3), plexus tumor (n = 2), CNS high-grade neuroepithelial tumor with MN1 alteration (n = 2), papillary tumor of the pineal region (n = 2), neurocytoma (n = 1), or did not match to any known brain tumor methylation class (n = 8). Overall, integrated diagnosis had to be changed in 35.6% of cases as compared to the initial diagnosis. Among the tumors molecularly classified as ependymoma (27/45 cases), tanycytic ependymomas were mostly located in the spine (5/7 cases) and matched to spinal or myxopapillary ependymoma. 6/8 clear cell ependymomas were found supratentorially and fell into the methylation class of RELA-EPN. Papillary ependymomas with a positive ependymoma match (12/19 cases) showed either a "papillary" (n = 5), a "trabecular" (n = 1), or a "pseudo-papillary" (n = 6) growth pattern. The papillary growth pattern was strongly associated with the methylation class B of posterior fossa ependymoma (PFB, 5/5 cases) and tumors displayed DNA methylation sites that were significantly different when compared to PFB ependymomas without papillary growth. Tumors with pseudo-papillary histology matched to the methylation class of myxopapillary ependymoma (4/6 cases), whereas the trabecular case was anatomically and molecularly a spinal ependymoma. Our results show that the diagnosis of histological ependymoma variants is challenging and epigenetic profiles may improve diagnostic accuracy of these cases. Whereas clear cell and papillary ependymomas display correlations between localization, histology, and methylation, tanycytic ependymoma does not represent a molecularly distinct subgroup.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ependimoma/genética , Ependimoma/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Criança , Estudos de Coortes , Metilação de DNA , Ependimoma/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Intervalo Livre de Progressão , Taxa de Sobrevida , Adulto Jovem
13.
Acta Neuropathol ; 140(6): 893-906, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926213

RESUMO

Paragangliomas/pheochromocytomas are rare neuroendocrine tumors that arise from the adrenal gland or ganglia at various sites throughout the body. They display a remarkable diversity of driver alterations and are associated with germline mutations in up to 40% of the cases. Comprehensive molecular profiling of abdomino-thoracic paragangliomas revealed four molecularly defined and clinically relevant subtypes. Paragangliomas of the cauda equina region are considered to belong to one of the defined molecular subtypes, but a systematic molecular analysis has not yet been performed. In this study, we analyzed genome-wide DNA methylation profiles of 57 cauda equina paragangliomas and show that these tumors are epigenetically distinct from non-spinal paragangliomas and other tumors. In contrast to paragangliomas of other sites, chromosomal imbalances are widely lacking in cauda equina paragangliomas. Furthermore, RNA and DNA exome sequencing revealed that frequent genetic alterations found in non-spinal paragangliomas-including the prognostically relevant SDH mutations-are absent in cauda equina paragangliomas. Histologically, cauda equina paragangliomas show frequently gangliocytic differentiation and strong immunoreactivity to pan-cytokeratin and cytokeratin 18, which is not common in paragangliomas of other sites. None of our cases had a familial paraganglioma syndrome. Tumors rarely recurred (9%) or presented with multiple lesions within the spinal compartment (7%), but did not metastasize outside the CNS. In summary, we show that cauda equina paragangliomas represent a distinct, sporadic tumor entity defined by a unique clinical and morpho-molecular profile.


Assuntos
Cauda Equina/patologia , Neoplasias do Sistema Nervoso Central/patologia , Tumores Neuroendócrinos/patologia , Paraganglioma/genética , Paraganglioma/patologia , Neoplasias do Sistema Nervoso Central/genética , Diagnóstico Diferencial , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/genética , Prognóstico
14.
Acta Neuropathol ; 139(1): 193-209, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563982

RESUMO

The "isomorphic subtype of diffuse astrocytoma" was identified histologically in 2004 as a supratentorial, highly differentiated glioma with low cellularity, low proliferation and focal diffuse brain infiltration. Patients typically had seizures since childhood and all were operated on as adults. To define the position of these lesions among brain tumours, we histologically, molecularly and clinically analysed 26 histologically prototypical isomorphic diffuse gliomas. Immunohistochemically, they were GFAP-positive, MAP2-, OLIG2- and CD34-negative, nuclear ATRX-expression was retained and proliferation was low. All 24 cases sequenced were IDH-wildtype. In cluster analyses of DNA methylation data, isomorphic diffuse gliomas formed a group clearly distinct from other glial/glio-neuronal brain tumours and normal hemispheric tissue, most closely related to paediatric MYB/MYBL1-altered diffuse astrocytomas and angiocentric gliomas. Half of the isomorphic diffuse gliomas had copy number alterations of MYBL1 or MYB (13/25, 52%). Gene fusions of MYBL1 or MYB with various gene partners were identified in 11/22 (50%) and were associated with an increased RNA-expression of the respective MYB-family gene. Integrating copy number alterations and available RNA sequencing data, 20/26 (77%) of isomorphic diffuse gliomas demonstrated MYBL1 (54%) or MYB (23%) alterations. Clinically, 89% of patients were seizure-free after surgery and all had a good outcome. In summary, we here define a distinct benign tumour class belonging to the family of MYB/MYBL1-altered gliomas. Isomorphic diffuse glioma occurs both in children and adults, has a concise morphology, frequent MYBL1 and MYB alterations and a specific DNA methylation profile. As an exclusively histological diagnosis may be very challenging and as paediatric MYB/MYBL1-altered diffuse astrocytomas may have the same gene fusions, we consider DNA methylation profiling very helpful for their identification.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Adulto , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Metilação de DNA , Feminino , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Fusão Oncogênica , Adulto Jovem
15.
Acta Neuropathol ; 138(5): 827-835, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31278449

RESUMO

Molecular markers have become pivotal in brain tumor diagnostics. Mutational analyses by targeted next-generation sequencing of DNA and array-based DNA methylation assessment with copy number analyses are increasingly being used in routine diagnostics. However, the broad variety of gene fusions occurring in brain tumors is marginally covered by these technologies and often only assessed by targeted assays. Here, we assessed the feasibility and clinical value of investigating gene fusions in formalin-fixed paraffin-embedded (FFPE) tumor tissues by next-generation mRNA sequencing in a routine diagnostic setting. After establishment and optimization of a workflow applicable in a routine setting, prospective diagnostic application in a neuropathology department for 26 months yielded relevant fusions in 66 out of 101 (65%) analyzed cases. In 43 (43%) cases, the fusions were of decisive diagnostic relevance and in 40 (40%) cases the fusion genes rendered a druggable target. A major strength of this approach was its ability to detect fusions beyond the canonical alterations for a given entity, and the unbiased search for any fusion event in cases with uncertain diagnosis and, thus, uncertain spectrum of expected fusions. This included both rare variants of established fusions which had evaded prior targeted analyses as well as the detection of previously unreported fusion events. While the impact of fusion detection on diagnostics is highly relevant, it is especially the detection of "druggable" fusions which will most likely provide direct benefit to the patients. The wider application of this approach for unbiased fusion identification therefore promises to be a major advance in identifying alterations with immediate impact on patient care.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Mutação/genética , Análise de Sequência de RNA , Sequência de Bases , Análise Mutacional de DNA/métodos , Fusão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neuropatologia/métodos , Inclusão em Parafina/métodos
16.
Acta Neuropathol ; 138(2): 295-308, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31069492

RESUMO

DNA methylation patterns delineate clinically relevant subgroups of meningioma. We previously established the six meningioma methylation classes (MC) benign 1-3, intermediate A and B, and malignant. Here, we set out to identify subgroup-specific mutational patterns and gene regulation. Whole genome sequencing was performed on 62 samples across all MCs and WHO grades from 62 patients with matched blood control, including 40 sporadic meningiomas and 22 meningiomas arising after radiation (Mrad). RNA sequencing was added for 18 of these cases and chromatin-immunoprecipitation for histone H3 lysine 27 acetylation (H3K27ac) followed by sequencing (ChIP-seq) for 16 samples. Besides the known mutations in meningioma, structural variants were found as the mechanism of NF2 inactivation in a small subset (5%) of sporadic meningiomas, similar to previous reports for Mrad. Aberrations of DMD were found to be enriched in MCs with NF2 mutations, and DMD was among the most differentially upregulated genes in NF2 mutant compared to NF2 wild-type cases. The mutational signature AC3, which has been associated with defects in homologous recombination repair (HRR), was detected in both sporadic meningioma and Mrad, but widely distributed across the genome in sporadic cases and enriched near genomic breakpoints in Mrad. Compared to the other MCs, the number of single nucleotide variants matching the AC3 pattern was significantly higher in the malignant MC, which also exhibited higher genomic instability, determined by the numbers of both large segments affected by copy number alterations and breakpoints between large segments. ChIP-seq analysis for H3K27ac revealed a specific activation of genes regulated by the transcription factor FOXM1 in the malignant MC. This analysis also revealed a super enhancer near the HOXD gene cluster in this MC, which, together with general upregulation of HOX genes in the malignant MC, indicates a role of HOX genes in meningioma aggressiveness. This data elucidates the biological mechanisms rendering different epigenetic subgroups of meningiomas, and suggests leveraging HRR as a novel therapeutic target.


Assuntos
Metilação de DNA , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Meníngeas/classificação , Meningioma/classificação , Mutação , Imunoprecipitação da Cromatina , Dosagem de Genes , Instabilidade Genômica , Humanos , Neoplasias Meníngeas/etiologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Meningioma/etiologia , Meningioma/genética , Meningioma/patologia , Proteínas de Neoplasias/genética , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , RNA Neoplásico/genética , Reparo de DNA por Recombinação , Alinhamento de Sequência , Fatores de Transcrição/fisiologia , Transcriptoma , Sequenciamento Completo do Genoma
17.
Acta Neuropathol ; 138(3): 497-504, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31250151

RESUMO

Rosette-forming glioneuronal tumor (RGNT) is a rare brain neoplasm that primarily affects young adults. Although alterations affecting the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathway have been associated with this low-grade entity, comprehensive molecular investigations of RGNT in larger series have not been performed to date, and an integrated view of their genetic and epigenetic profiles is still lacking. Here we describe a genome-wide DNA methylation and targeted sequencing-based characterization of a molecularly distinct class of tumors (n = 30), initially identified through genome-wide DNA methylation screening among a cohort of > 30,000 tumors, of which most were diagnosed histologically as RGNT. FGFR1 hotspot mutations were observed in all tumors analyzed, with co-occurrence of PIK3CA mutations in about two-thirds of the cases (63%). Additional loss-of-function mutations in the tumor suppressor gene NF1 were detected in a subset of cases (33%). Notably, in contrast to most other low-grade gliomas, these tumors often displayed co-occurrence of two or even all three of these mutations. Our data highlight that molecularly defined RGNTs are characterized by highly recurrent combined genetic alterations affecting both MAPK and PI3K signaling pathways. Thus, these two pathways appear to synergistically interact in the formation of RGNT, and offer potential therapeutic targets for this disease.


Assuntos
Neoplasias Encefálicas/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Glioma/genética , Neurofibromina 1/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Adolescente , Adulto , Idoso , Criança , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neurônios/patologia , Estudos Retrospectivos , Adulto Jovem
18.
Acta Neuropathol ; 137(5): 837-846, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30759284

RESUMO

Papillary glioneuronal tumor (PGNT) is a WHO-defined brain tumor entity that poses a major diagnostic challenge. Recently, SLC44A1-PRKCA fusions have been described in PGNT. We subjected 28 brain tumors from different institutions histologically diagnosed as PGNT to molecular and morphological analysis. Array-based methylation analysis revealed that 17/28 tumors exhibited methylation profiles typical for other tumor entities, mostly dysembryoplastic neuroepithelial tumor and hemispheric pilocytic astrocytoma. Conversely, 11/28 tumors exhibited a unique profile, thus constituting a distinct methylation class PGNT. By screening the extended Heidelberg cohort containing over 25,000 CNS tumors, we identified three additional tumors belonging to this methylation cluster but originally histologically diagnosed otherwise. RNA sequencing for the detection of SLC44A1-PRKCA fusions could be performed on 19 of the tumors, 10 of them belonging to the methylation class PGNT. In two additional cases, SLC44A1-PRKCA fusions were confirmed by FISH. We detected fusions involving PRKCA in all cases of this methylation class with material available for analyses: the canonical SLC44A1-PRKCA fusion was observed in 11/12 tumors, while the remaining case exhibited a NOTCH1-PRKCA fusion. Neither of the fusions was found in the tumors belonging to other methylation classes. Our results point towards a high misclassification rate of the morphological diagnosis PGNT and clearly demonstrate the necessity of molecular analyses. PRKCA fusions are highly diagnostic for PGNT, and detection by RNA sequencing enables the identification of rare fusion partners. Methylation analysis recognizes a unique methylation class PGNT irrespective of the nature of the PRKCA fusion.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/metabolismo , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Adolescente , Adulto , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Criança , Estudos de Coortes , Feminino , Fusão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Neuroepiteliomatosas/patologia , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)
19.
Eur J Nucl Med Mol Imaging ; 46(12): 2569-2580, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31388723

RESUMO

PURPOSE: Targeting fibroblast activation protein (FAP) is a new diagnostic approach allowing the visualization of tumor stroma. Here, we applied FAP-specific PET imaging to gliomas. We analyzed the target affinity and specificity of two FAP ligands (FAPI-02 and FAPI-04) in vitro, and the pharmacokinetics and biodistribution in mice in vivo. Clinically, we used 68Ga-labeled FAPI-02/04 for PET imaging in 18 glioma patients (five IDH-mutant gliomas, 13 IDH-wildtype glioblastomas). METHODS: For binding studies with 177Lu-radiolabeled FAPI-02/04, we used the glioblastoma cell line U87MG, FAP-transfected fibrosarcoma cells, and CD26-transfected human embryonic kidney cells. For pharmacokinetic and biodistribution studies, U87MG-xenografted mice were injected with 68Ga-labeled compounds followed by small-animal PET imaging and 177Lu-labeled FAPI-02/04, respectively. Clinical PET/CT scans were performed 30 min post intravenous administration of 68Ga-FAPI-02/04. PET and MRI scans were co-registrated. Immunohistochemistry was done on 14 gliomas using a FAP-specific antibody. RESULTS: FAPI-02 and FAPI-04 showed high binding specificity to FAP. FAPI-04 demonstrated higher tumor accumulation and delayed elimination compared with FAPI-02 in preclinical studies. IDH-wildtype glioblastomas and grade III/IV, but not grade II, IDH-mutant gliomas showed elevated tracer uptake. In glioblastomas, we observed spots with increased uptake in projection on contrast-enhancing areas. Immunohistochemistry showed FAP-positive cells with mainly elongated cell bodies and perivascular FAP-positive cells in glioblastomas and an anaplastic IDH-mutant astrocytoma. CONCLUSIONS: Using FAP-specific PET imaging, increased tracer uptake in IDH-wildtype glioblastomas and high-grade IDH-mutant astrocytomas, but not in diffuse astrocytomas, may allow non-invasive distinction between low-grade IDH-mutant and high-grade gliomas. Therefore, FAP-specific imaging in gliomas may be useful for follow-up studies although further clinical evaluation is required.


Assuntos
Gelatinases/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Isocitrato Desidrogenase/genética , Proteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Serina Endopeptidases/metabolismo , Acebutolol , Adulto , Animais , Transporte Biológico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Endopeptidases , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Humanos , Ligantes , Camundongos , Pessoa de Meia-Idade , Mutação , Naftóis , Gradação de Tumores , Traçadores Radioativos , Triazinas , Adulto Jovem
20.
Acta Neuropathol ; 136(2): 181-210, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967940

RESUMO

Recently, we described a machine learning approach for classification of central nervous system tumors based on the analysis of genome-wide DNA methylation patterns [6]. Here, we report on DNA methylation-based central nervous system (CNS) tumor diagnostics conducted in our institution between the years 2015 and 2018. In this period, more than 1000 tumors from the neurosurgical departments in Heidelberg and Mannheim and more than 1000 tumors referred from external institutions were subjected to DNA methylation analysis for diagnostic purposes. We describe our current approach to the integrated diagnosis of CNS tumors with a focus on constellations with conflicts between morphological and molecular genetic findings. We further describe the benefit of integrating DNA copy-number alterations into diagnostic considerations and provide a catalog of copy-number changes for individual DNA methylation classes. We also point to several pitfalls accompanying the diagnostic implementation of DNA methylation profiling and give practical suggestions for recurring diagnostic scenarios.


Assuntos
Neoplasias do Sistema Nervoso Central/classificação , Neoplasias do Sistema Nervoso Central/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Proteínas de Neoplasias/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Feminino , Humanos , Isocitrato Desidrogenase/genética , Masculino , Receptores Proteína Tirosina Quinases/genética , Estudos Retrospectivos , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA