Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nano Lett ; 19(6): 3535-3542, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31009227

RESUMO

Semiconductor quantum well structures have been critical to the development of modern photonics and solid-state optoelectronics. Quantum level tunable structures have introduced new transformative device applications and afforded a myriad of groundbreaking studies of fundamental quantum phenomena. However, noncolloidal, III-V compound quantum well structures are limited to traditional semiconductor materials fabricated by stringent epitaxial growth processes. This report introduces artificial multiple quantum wells (MQWs) built from CsPbBr3 perovskite materials using commonly available thermal evaporator systems. These perovskite-based MQWs are spatially aligned on a large-area substrate with multiple stacking and systematic control over well/barrier thicknesses, resulting in tunable optical properties and a carrier confinement effect. The fabricated CsPbBr3 artificial MQWs can be designed to display a variety of photoluminescence (PL) characteristics, such as a PL peak shift commensurate with the well/barrier thickness, multiwavelength emissions from asymmetric quantum wells, the quantum tunneling effect, and long-lived hot-carrier states. These new artificial MQWs pave the way toward widely available semiconductor heterostructures for light-conversion applications that are not restricted by periodicity or a narrow set of dimensions.

2.
Angew Chem Int Ed Engl ; 59(35): 14802-14808, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32449822

RESUMO

The major challenge in solar water splitting to H2 and O2 is in making a stable and affordable system for large-scale applications. We have designed, fabricated, and tested a photoelectrochemical reactor characterized as follows: 1) it comprises an integrated device to reduce the balance of the system cost, 2) it utilizes concentrated sunlight to reduce the photoabsorber cost, and 3) it employs and alkaline electrolyte to reduce catalyst cost and eliminate external thermal management needs. The system consists of an III-V-based photovoltaic cell integrated with Ni foil as an O2 evolution catalyst that also protects the cell from corrosion. At low light concentration, without the use of optical lenses, the solar-to-hydrogen (STH) efficiency was 18.3 %, while at high light concentration (up to 207 suns) with the use of optical lenses, the STH efficiency was 13 %. Catalytic tests conducted for over 100 hours at 100-200 suns showed no sign of degradation nor deviation from product stoichiometry (H2 /O2 =2). Further tests projected a system stability of years.

3.
Opt Express ; 26(12): 14869-14878, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114792

RESUMO

High-quality InxGa1-xN/GaN multi-quantum well (MQW) structures (0.05≤x≤0.13), are successfully grown on transparent and conductive (-201)-oriented ß-Ga2O3 substrate. Scanning-transmission electron microscopy and secondary ion mass spectrometry (SIMS) show well-defined high quality MQWs, while the In and Ga compositions in the wells and the barriers are estimated by SIMS. Temperature-dependant Photoluminescence (PL) confirms high optical quality with a strong bandedge emission and negligble yellow band. time-resolved PL measurements (via above/below-GaN bandgap excitations) explain carrier dynamics, showing that the radiative recombination is predominant. Our results demonstrate that (-201)-oriented ß-Ga2O3 is a strong candidate as a substrate for III-nitride-based vertical- emitting devices.

4.
Nano Lett ; 17(3): 2021-2027, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28145714

RESUMO

Understanding defect chemistry, particularly ion migration, and its significant effect on the surface's optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

5.
ACS Biomater Sci Eng ; 10(1): 391-404, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38095213

RESUMO

The efficacy of neural electrode stimulation and recording hinges significantly on the choice of a neural electrode interface material. Transition metal carbides (TMCs), particularly titanium carbide (TiC), have demonstrated exceptional chemical stability and high electrical conductivity. Yet, the fabrication of TiC thin films and their potential application as neural electrode interfaces remains relatively unexplored. Herein, we present a systematic examination of TiC thin films synthesized through nonreactive radio frequency (RF) magnetron sputtering. TiC films were optimized toward high areal capacitance, low impedance, and stable electrochemical cyclability. We varied the RF power and deposition pressure to pinpoint the optimal properties, focusing on the deposition rate, surface roughness, crystallinity, and elemental composition to achieve high areal capacitance and low impedance. The best-performing TiC film showed an areal capacitance of 475 µF/cm2 with a capacitance retention of 93% after 5000 cycles. In addition, the electrochemical performance of the optimum film under varying scanning rates demonstrated a stable electrochemical performance even under dynamic and fast-changing stimulation conditions. Furthermore, the in vitro cell culture for 3 weeks revealed excellent biocompatibility, promoting cell growth compared with a control substrate. This work presents a novel contribution, highlighting the potential of sputtered TiC thin films as robust neural electrode interface materials.


Assuntos
Técnicas de Cultura de Células , Eletrodos
6.
Adv Mater ; 36(9): e2306466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37914391

RESUMO

The fabrication of perovskite solar cells (PSCs) through blade coating is seen as one of the most viable paths toward commercialization. However, relative to the less scalable spin coating method, the blade coating process often results in more defective perovskite films with lower grain uniformity. Ion migration, facilitated by those elevated defect levels, is one of the main triggers of phase segregation and device instability. Here, a bifunctional molecule, p-aminobenzoic acid (PABA), which enhances the barrier to ion migration, induces grain growth along the (100) facet, and promotes the formation of homogeneous perovskite films with fewer defects, is reported. As a result, PSCs with PABA achieved impressive power conversion efficiencies (PCEs) of 23.32% and 22.23% for devices with active areas of 0.1 cm2 and 1 cm2 , respectively. Furthermore, these devices maintain 93.8% of their initial efficiencies after 1 000 h under 1-sun illumination, 75 °C, and 10% relative humidity conditions.

7.
ACS Omega ; 8(49): 46804-46815, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107938

RESUMO

Here, we explore a catalyst-free single-step growth strategy that results in high-quality self-assembled single-crystal vertical GaN nanowires (NWs) grown on a wide range of common and novel substrates (including GaN, Ga2O3, and monolayer two-dimensional (2D) transition-metal dichalcogenide (TMD)) within the same chamber and thus under identical conditions by pulsed laser deposition. High-resolution transmission electron microscopy and scanning transmission electron microscopy (HR-STEM) and grazing incidence X-ray diffraction measurements confirm the single-crystalline nature of the obtained NWs, whereas advanced optical and cathodoluminescence measurements provide evidence of their high optical quality. Further analyses reveal that the growth is initiated by an in situ polycrystalline layer formed between the NWs and substrates during growth, while as its thickness increases, the growth mode transforms into single-crystalline NW nucleation. HR-STEM and corresponding energy-dispersive X-ray compositional analyses indicate possible growth mechanisms. All samples exhibit strong band edge UV emission (with a negligible defect band) dominated by radiative recombination with a high optical efficiency (∼65%). As all NWs have similar structural and optical qualities irrespective of the substrate used, this strategy will open new horizons for developing III-nitride-based devices.

8.
ACS Appl Mater Interfaces ; 14(15): 17889-17898, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35404567

RESUMO

Copper thiocyanate (CuSCN) is a p-type semiconductor that exhibits hole-transport and wide-band gap (∼3.9 eV) characteristics. However, the conductivity of CuSCN is not sufficiently high, which limits its potential application in optoelectronic devices. Herein, CuSCN thin films were exposed to chlorine using a dry etching system to enhance their electrical properties, yielding a maximum hole concentration of 3 × 1018 cm-3. The p-type CuSCN layer was then deposited onto an n-type gallium nitride (GaN) layer to form a prototypical ultraviolet-based photodetector. X-ray photoelectron spectroscopy further demonstrated the interface electronic structures of the heterojunction, confirming a favorable alignment for holes and electrons transport. The ensuing p-CuSCN/n-GaN heterojunction photodetector exhibited a turn-on voltage of 2.3 V, a responsivity of 1.35 A/W at -1 V, and an external quantum efficiency of 5.14 × 102% under illumination with ultraviolet light (peak wavelength of 330 nm). The work opens a new pathway for making a plethora of hybrid optoelectronic devices of inorganic and organic nature by using p-type CuSCN as the hole injection layer.

9.
Nanomaterials (Basel) ; 11(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34947584

RESUMO

Being environmentally friendly, safe and easy to handle, aqueous electrolytes are of particular interest for next-generation electrochemical energy storage devices. When coupled with an abundant, recyclable and low-cost electrode material such as aluminum, the promise of a green and economically sustainable battery system has extraordinary appeal. In this work, we study the interaction of an aqueous electrolyte with an aluminum plate anode and various graphitic cathodes. Upon establishing the boundary conditions for optimal electrolyte performance, we find that a mesoporous reduced graphene oxide powder constitutes a better cathode material option than graphite flakes.

10.
JACS Au ; 1(11): 1961-1974, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34841412

RESUMO

The production of carbon-neutral fuels from CO2 presents an avenue for causing an appreciable effect in terms of volume toward the mitigation of global carbon emissions. To that end, the production of isoparaffin-rich fuels is highly desirable. Here, we demonstrate the potential of a multifunctional catalyst combination, consisting of a methanol producer (InCo) and a Zn-modified zeolite beta, which produces a mostly isoparaffinic hydrocarbon mixture from CO2 (up to ∼85% isoparaffin selectivity among hydrocarbons) at a CO2 conversion of >15%. The catalyst combination was thoroughly characterized via an extensive complement of techniques. Specifically, operando X-ray absorption spectroscopy (XAS) reveals that Zn (which plays a crucial role of providing a hydrogenating function, improving the stability of the overall catalyst combination and isomerization performance) is likely present in the form of Zn6O6 clusters within the zeolite component, in contrast to previously reported estimations.

11.
Anal Chem ; 82(24): 10052-9, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21073169

RESUMO

This work reports a comparative study on the capability of low energy primary ion beams for depth profiling nonpolymeric molecules including amino-acid and sugar layers. Due to their different behavior regarding depth profiling, phenylalanine and trehalose molecules are chosen as reference systems. Each molecule was dissolved in suitable solvent prior to spin-coating on clean silicon wafer. The film thicknesses were in the order of 70 and 100 nm for phenylalanine and trehalose respectively. Depth profiling feasibility were assessed first using Cs(+) as reactive sputtering ion at various energies. The results obtained under Cs(+) sputtering ions are compared afterward to those obtained under Xe(+) sputtering ions which are inert and have a mass very similar to Cs(+). In order to investigate the effect of oxygen, depth profiling are also performed using either Xe(+) under oxygen flooding or O(2)(+) as sputtering ions. While phenylalanine could be depth profiled successfully using Cs(+) ions, Xe(+) and O(2)(+) ions failed to retain any characteristic signal. The sputtering yields measured as a function of the ion beam energies were higher using Cs(+), in particular at low energies. The chemical reactivity of the cesium atoms being implanted during the sputtering process helps to prevent the loss of the molecular phenylalanine signal. In contrast, depth profiling of trehalose was more successful upon Xe(+) and O(2)(+) compared to Cs(+). In this case the sputtering yields were higher if Xe(+) primary ion is employed instead of Cs(+). The different trends observed in this study are interpreted using arguments involving the reactivity of the sputtering ions.


Assuntos
Aminoácidos/análise , Carboidratos/análise , Césio , Oxigênio , Xenônio , Cátions , Fenilalanina , Trealose
13.
ACS Appl Mater Interfaces ; 11(42): 38921-38928, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31496212

RESUMO

Solution-processed deep ultraviolet (DUV) photodetectors based on wide band gap oxide semiconductors (WBGS) working in the <280 nm wavelength range are drawing increasing attention of the research community because of their cost-effective production and potential use in diverse applications. Here, we report on the synthesis of novel core-shell amorphous gallium oxide nanoparticles (NPs) (a-Ga2Ox/GaOx NPs) that have not been previously obtained. The amorphous gallium oxide NPs were synthesized from gallium nitride using the femtosecond laser ablation in liquid technique. Transmission electron microscopy and electron energy-loss spectroscopy measurements revealed the amorphous NP nature with a Ga-rich core and oxide-rich shell. Optical properties of these core-shell amorphous gallium oxide NPs were investigated by time-resolved spectroscopy and photoluminescence. As a proof of concept, the amorphous gallium oxide NPs were used as an active layer in a solar-blind DUV photodetector with high responsivity (778 mA/W) at 244 nm, which is the highest responsivity recorded to date for any solution-processed DUV photodetector. This work on a high-performance solution-processed device paves the way for large-scale industrial application of the WBGS.

14.
ACS Appl Mater Interfaces ; 11(31): 27989-27996, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31343859

RESUMO

One-dimensional (1D) structures-based UV-light-emitting diode (LED) has immense potential for next-generation applications. However, several issues related to such devices must be resolved first, such as expensive material and growth methods, complicated fabrication process, efficiency droop, and unavoidable metal contamination due to metal catalyst that reduces device efficiency. To overcome these obstacles, we have developed a novel growth method for obtaining a high-quality hexagonal, well-defined, and vertical 1D Gd-doped n-ZnO nanotube (NT) array deposited on p-GaN films and other substrates by pulsed laser deposition. By adopting this approach, the desired high optical and structural quality is achieved without utilizing metal catalyst. Transmission electron microscopy measurements confirm that gadolinium dopants in the target form a transparent in situ interface layer to assist in vertical NT formation. Microphotoluminescence (PL) measurements of the NTs reveal an intense ZnO band edge emission without a defect band, indicating high quality. Carrier dynamic analysis via time-resolved PL confirms that the emission of n-ZnO NTs/p-GaN LED structure is dominated significantly by the radiative recombination process without efficiency droop when high carrier density is injected optically. We developed an electrically pumped UV Gd-doped ZnO NTs/GaN LED as a proof of concept, demonstrating its high internal quantum efficiency (>65%). The demonstrated performance of this cost-effective UV LED suggests its potential application in large-scale device production.

15.
Nat Commun ; 10(1): 4475, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578327

RESUMO

Looking beyond energy harvesting, metal-halide perovskites offer great opportunities to revolutionise large-area photodetection technologies due to their high absorption coefficients, long diffusion lengths, low trap densities and simple processability. However, successful extraction of photocarriers from perovskites and their conversion to electrical signals remain challenging due to the interdependency of photogain and dark current density. Here we report hybrid hetero-phototransistors by integrating perovskites with organic semiconductor transistor channels to form either "straddling-gap" type-I or "staggered-gap" type-II heterojunctions. Our results show that gradual transforming from type-II to type-I heterojunctions leads to increasing and tuneable photoresponsivity with high photogain. Importantly, with a preferential edge-on molecular orientation, the type-I heterostructure results in efficient photocarrier cycling through the channel. Additionally, we propose the use of a photo-inverter circuitry to assess the phototransistors' functionality and amplification. Our study provides important insights into photocarrier dynamics and can help realise advanced device designs with "on-demand" optoelectronic properties.

16.
Anal Chem ; 80(16): 6235-44, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18630928

RESUMO

A model alkane molecule, triacontane, is used to assess the effects of condensed gold and silver nanoparticles on the molecular ion yields upon atomic (Ga(+) and In(+)) and polyatomic (C60(+) and Bi3(+)) ion bombardment in metal-assisted secondary ion mass spectrometry (MetA-SIMS). Molecular films spin-coated on silicon were metallized using a sputter-coater system, in order to deposit controlled quantities of gold and silver on the surface (from 0 to 15 nm equivalent thickness). The effects of gold and silver islets condensed on triacontane are also compared to the situation of thin triacontane overlayers on metallic substrates (gold and silver). The results focus primarily on the measured yields of quasi-molecular ions, such as (M - H)(+) and (2M - 2H)(+), and metal-cationized molecules, such as (M + Au)(+) and (M + Ag)(+), as a function of the quantity of metal on the surface. They confirm the absence of a simple rule to explain the secondary ion yield improvement in MetA-SIMS. The behavior is strongly dependent on the specific projectile/metal couple used for the experiment. Under atomic bombardment (Ga(+), In(+)), the characteristic ion yields an increase with the gold dose up to approximately 6 nm equivalent thickness. The yield enhancement factor between gold-metallized and pristine samples can be as large as approximately 70 (for (M - H)(+) under Ga(+) bombardment; 10 nm of Au). In contrast, with cluster projectiles such as Bi3(+) and C60(+), the presence of gold and silver leads to a dramatic molecular ion yield decrease. Cluster projectiles prove to be beneficial for triacontane overlayers spin-coated on silicon or metal substrates (Au, Ag) but not in the situation of MetA-SIMS. The fundamental difference of behavior between atomic and cluster primary ions is tentatively explained by arguments involving the different energy deposition mechanisms of these projectiles. Our results also show that Au and Ag nanoparticles do not induce the same behavior in MetA-SIMS of triacontane. The microstructures of the metallized layers are also different. While metallic substrates provide higher yields than metal islet overlayers in the case of silver, whatever the projectile used, the situation is reversed with gold.

17.
Nat Commun ; 9(1): 2059, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802311

RESUMO

Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm-2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

18.
J Am Soc Mass Spectrom ; 20(12): 2294-303, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19811931

RESUMO

This article investigates the influence of the organic film thickness on the characteristic and molecular ion yields of polystyrene (PS), in combination with two different substrates (Si, Au) or gold condensation (MetA-SIMS), and for atomic (Ga+) and polyatomic (C60+) projectile bombardment. PS oligomer (m/z approximately 2000 Da) layers were prepared with various thicknesses ranging from 1 up to 45 nm on both substrates. Pristine samples on Si were also metallized by evaporating gold with three different thicknesses (0.5, 2, and 6 nm). Secondary ion mass spectrometry was performed using 12 keV atomic Ga+ and C60+ projectiles. The results show that upon Ga+ bombardment, the yield of the fingerprint fragment C7H7+ increases as the PS coverage increases and reaches its maximum for a thickness that corresponds to a complete monolayer (approximately 3.5 nm). Beyond the maximum, the yields decrease strongly and become constant for layers thicker than 12 nm. In contrast, upon C60+ bombardment, the C7H7+ yields increase up to the monolayer coverage and they remain constant for higher thicknesses. A strong yield enhancement is confirmed upon Ga+ analysis of gold-metallized layers but yields decrease continuously with the gold coverage for C60+ bombardment. Upon Ga+ bombardment, the maximum PS fingerprint ion yields are obtained using a monolayer spin-coated on gold, whereas for C60+, the best results are obtained with at least one monolayer, irrespective of the substrate and without any other treatment. The different behaviors are tentatively explained by arguments involving the different energy deposition mechanisms of both projectiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA