Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 19(4): 563-72, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933215

RESUMO

Action myoclonus-renal failure syndrome (AMRF) is caused by mutations in the lysosomal integral membrane protein type 2 (LIMP-2/SCARB2). LIMP-2 was identified as a sorting receptor for beta-glucocerebrosidase (beta-GC), which is defective in Gaucher disease. To date, six AMRF-causing mutations have been described, including splice site, missense and nonsense mutations. All mutations investigated in this study lead to a retention of LIMP-2 in the endoplasmic reticulum (ER) but affect the binding to beta-GC differentially. From the three nonsense mutations, only the Q288X mutation was still able to bind to beta-GC as efficiently as compared with wild-type LIMP-2, whereas the W146SfsX16 and W178X mutations lost their beta-GC-binding capacity almost completely. The LIMP-2 segment 145-288, comprising the nonsense mutations, contains a highly conserved coiled-coil domain, which we suggest determines beta-GC binding. In fact, disruption of the helical arrangement and amphiphatic nature of the coiled-coil domain abolishes beta-GC binding, and a synthetic peptide comprising the coiled-coil domain of LIMP-2 displays pH-selective multimerization properties. In contrast to the reduced binding properties of the nonsense mutations, the only missense mutation (H363N) found in AMRF leads to increased binding of beta-GC to LIMP-2, indicating that this highly conserved histidine modifies the affinity of LIMP-2 to its ligand. With the present study, we demonstrate that disruption of the coiled-coil structure or AMRF disease-causing mutations abolish beta-GC binding, indicating the importance of an intact coiled-coil structure for the interaction of LIMP-2 and beta-GC.


Assuntos
Antígenos CD36/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Mutação , Epilepsias Mioclônicas Progressivas/genética , Receptores Depuradores/metabolismo , Animais , Antígenos CD36/química , Antígenos CD36/genética , Modelos Animais de Doenças , Humanos , Ligantes , Proteínas de Membrana Lisossomal/química , Proteínas de Membrana Lisossomal/genética , Camundongos , Camundongos Knockout , Epilepsias Mioclônicas Progressivas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Depuradores/química , Receptores Depuradores/genética
2.
FEBS Lett ; 581(8): 1594-8, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17382933

RESUMO

Mutations in the KCNQ2 gene cause myokymia and neonatal epilepsy, indicating that this K(+) channel regulates the excitability of lower motoneurons and CNS neurons. Little is known about the parameters that direct the assembly of this multimeric molecule and other KCNQ subunits. Here, we show that the carboxy-terminal subunit interaction domain of KCNQ2 autonomously folds and assembles into tetramers. This domain contains a bipartite coiled-coil motif. Whereas structural integrity of the second coiled-coil motif is crucial for tetramer formation, that of the first motif is less important. These data suggest a crucial role of coiled-coil motifs in tetrameric KCNQ channel assembly.


Assuntos
Canal de Potássio KCNQ2/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Humanos , Canal de Potássio KCNQ2/genética , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA