Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 87(13): 8437-8444, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35679839

RESUMO

An organocatalyzed, formal (3+3) cycloaddition reaction is described for the practical synthesis of substituted pyridines. Starting from readily available enamines and enal/ynal/enone substrates, the protocol affords tri- or tetrasubstituted pyridine scaffolds bearing various functional groups. This method was demonstrated on a 50 g scale, enabling the synthesis of 2-isopropyl-4-methylpyridin-3-amine, a raw material used for the manufacture of sotorasib. Mechanistic analysis using two-dimensional nuclear magnetic resonance (NMR) spectrometry revealed the transformation proceeds through the reversible formation of a stable reaction off-cycle species that precedes pyridine formation. In situ reaction progress kinetic analysis and control NMR studies were employed to better understand the role of FeCl3 and pyrrolidine hydrochloride in promoting the reaction.


Assuntos
Aldeídos , Cetonas , Aldeídos/química , Catálise , Reação de Cicloadição , Cetonas/química , Cinética , Piridinas/química
2.
J Org Chem ; 84(8): 4653-4660, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30336032

RESUMO

Unusual Pd deactivation and inhibition pathways were observed in a C-N coupling system. Irreversible catalyst deactivation involved C-H insertion of Pd into BippyPhos leading to an off-cycle palladaphosphacyclobutene. Product inhibition led to deactivated Pd but released ligand in the process, allowing it to react with additional Pd precursor to re-enter the catalytic cycle. In situ recycling of the ligand allowed for an input L/Pd ratio of ≪1 with no impact on reaction kinetics.

3.
J Org Chem ; 83(7): 3928-3940, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29557160

RESUMO

An efficient, concise enantioselective total synthesis of the potent antitumor antibiotic (+)-duocarmycin SA is described. The invented route is based on a disconnection strategy that was devised to facilitate rapid and efficient synthesis of key core compounds to enable preclinical structure-activity relationship investigations. The key tricycle core was constructed with a highly enantioselective indole hydrogenation to set the stereocenter and a subsequent hitherto unexplored vicarious, nucleophilic-substitution/cyclization sequence to effectively forge a final indole ring. Additionally, the development of a stable sulfonamide protecting group capable of mild chemoselective cleavage greatly enhanced sequence yield and throughput. An understanding of key reaction parameters ensured a robust, reproducible sequence easily executable on decagram scales to this highly promising class of compounds.


Assuntos
Indóis/química , Indóis/síntese química , Ciclização , Duocarmicinas , Hidrogenação , Estrutura Molecular , Pirróis/síntese química , Pirróis/química , Estereoisomerismo
4.
J Am Chem Soc ; 136(28): 9878-81, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24967720

RESUMO

An approach to the synthesis of the (iso)cyclocitrinol core structure is described. The key step is a tandem Ireland Claisen/Cope rearrangement sequence, wherein the Ireland Claisen rearrangement effects ring contraction to a strained 10-membered ring, and that strain in turn drives the Cope rearrangement under unusually mild thermal conditions. A major side product was identified as resulting from an unexpected and remarkably facile [1,3]-sigmatropic rearrangement, and a tactic to disfavor the [1,3] pathway and increase the efficiency of the tandem reaction was rationally devised.


Assuntos
Terpenos/síntese química , Lactonas/síntese química , Lactonas/química , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
6.
J Am Chem Soc ; 132(9): 3078-91, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20121104

RESUMO

Detailed experimental and computational studies of the high selectivity for functionalization of primary over secondary sp(3) C-H bonds in alkanes by borane reagents catalyzed by Cp*Rh complexes are reported. Prior studies have shown that Cp*Rh(X)(Bpin) (X = H or Bpin), generated from Cp*Rh(H)(2)(Bpin)(2) and Cp*Rh(H)(2)(Bpin)(3), are likely intermediates in these catalytic reactions. To allow analysis of the system by H/D exchange, the current studies focused on reactions of Cp*Rh(D)(2)(Bpin)(2) through the 16-electron species Cp*Rh(D)(Bpin). Density functional theory (DFT) calculations of the reaction between Cp*Rh(H)(BO(2)C(2)H(4)) and the primary and secondary C-H bonds of propane indicate that the lowest energy pathway for C-H bond cleavage occurs to form an isomer in which the alkyl and boryl groups are trans to each other, while the lowest energy pathway for functionalization of the primary C-H bond occurs by formation of the isomer in which these two groups are cis to each other. The barrier for formation of the rhodium complex by cleavage of secondary C-H bonds is higher than that by cleavage of primary C-H bond. The alkyl intermediates are formed reversibly, and steric effects cause the barrier for B-C bond formation from the secondary alkyl intermediate to be higher than that from the primary alkyl intermediate. Experimental studies are consistent with this computational analysis. H/D exchange occurs between (Cp*d(15))Rh(D)(2)(Bpin)(2) and n-octane, indicating that C-H bond cleavage occurs reversibly and occurs faster at primary over secondary C-H bonds. The observation of small amounts of H/D exchange into the secondary C-H bonds of linear alkanes and the clear observation of H/D exchange into the secondary positions of cyclic alkanes without formation of products from functionalization are consistent with the high barrier calculated for B-C bond formation from the secondary alkyl intermediate. A series of kinetic experiments are consistent with a mechanism for H/D exchange between (Cp*d(15))Rh(D)(2)(Bpin)(2) and n-octane occurring by dissociation of borane-d(1) to form (Cp*d(15))Rh(D)(Bpin). Thus, the origin of the selectivity for borylation of primary over secondary C-H bonds is due to the cumulative effects of selective C-H bond cleavage and selective C-B bond formation.


Assuntos
Alcanos/química , Boranos/síntese química , Compostos Organometálicos/química , Ródio/química , Sítios de Ligação , Boranos/química , Catálise , Simulação por Computador , Modelos Químicos
8.
Chem Commun (Camb) ; (37): 5603-5, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19753371

RESUMO

Iridium trisboryl complexes containing bisphosphine and bipyridine ligands and pinacolate and catecholate substituents on boron are reported. A large difference in reactivity towards the borylation of C-H bonds is observed for this series of trisboryl complexes, and this difference is attributed to the electron-donating properties of the pinacolate vs. catecholate groups, and the steric and electronic properties of bipyridine vs. bisphosphine ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA