Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38591378

RESUMO

As derivatives of metal halide perovskite materials, low-dimensional metal halide materials have become important materials that have attracted much attention in recent years. As one branch, zinc-based metal halides have the potential for practical applications due to their lead-free, low-toxicity and high-stability characteristics. However, pure zinc-based metal halide materials are still limited by their poor optical properties and cannot achieve large-scale practical applications. Therefore, in this work, we report an organic-inorganic hybrid zero-dimensional zinc bromide, (TDMP)ZnBr4, using transition metal Mn2+ ions as dopants and incorporating them into the (TDMP)ZnBr4 lattice. The original non-emissive (TDMP)ZnBr4 exhibits bright green emission under the excitation of external UV light after the introduction of Mn2+ ions with a PL peak position located at 538 nm and a PLQY of up to 91.2%. Through the characterization of relevant photophysical properties and the results of theoretical calculations, we confirm that this green emission in Mn2+:(TDMP)ZnBr4 originates from the 4T1 → 6A1 optical transition process of Mn2+ ions in the lattice structure, and the near-unity PLQY benefits from highly localized electrons generated by the unique zero-dimensional structure of the host material (TDMP)ZnBr4. This work provides theoretical guidance and reference for expanding the family of zinc-based metal halide materials and improving and controlling their optical properties through ion doping.

2.
Vaccines (Basel) ; 12(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39066415

RESUMO

Novel adjuvants and innovative combinations of adjuvants (Adjuvant Systems) have facilitated the development of enhanced and new vaccines against re-emerging and challenging pathogenic microorganisms. Nonetheless, the efficacy of adjuvants is influenced by various factors, and the same adjuvant may generate entirely different immune responses when paired with different antigens. Herein, we combined the MPXV-B6R antigen with BC02, a novel adjuvant with proprietary technology, to assess its capability to induce both cellular and humoral immunity in mouse models. Mice received two intramuscular injections of B6R-BC02, which resulted in the production of MPXV-specific IgG, IgG1, and IgG2a antibodies. Additionally, it elicited strong MPXV-specific Th1-oriented cellular immunity and persistent effector memory B-cell responses. The advantages of BC02 were further validated, including rapid initiation of the immune response, robust recall memory, and sustained immune response induction. Although the potential of immunized mice to produce serum-neutralizing antibodies against the vaccinia virus requires further improvement, the exceptional performance of BC02 as an adjuvant for the MPXV-B6R antigen has been consistently demonstrated.

3.
Micromachines (Basel) ; 13(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35334639

RESUMO

Droplet detachment from solid surfaces is an essential part of many industrial processes. Electrowetting is a versatile tool for handling droplets in digital microfluidics, not only on plain surface but also in 3-D manner. Here, we report for the first time droplet trampolining using electrowetting. With the information collected by the real-time capacitor sensing system, we are able to synchronize the actuation signal with the spreading of the droplet upon impacting. Since electrowetting is applied each time the droplet impacts the substrate and switched off during recoiling of the droplet, the droplet gains additional momentum upon each impact and is able to jump higher during successive detachment. We have modelled the droplet trampolining behavior with a periodically driven harmonic oscillator, and the experiments showed sound agreement with theoretical predictions. The findings from this study will offer valuable insights to applications that demands vertical transportation of the droplets between chips arranged in parallel, or detachment of droplets from solid surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA