RESUMO
SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.
Assuntos
Interações Hospedeiro-Patógeno , RNA Viral/genética , SARS-CoV-2/genética , Animais , COVID-19/virologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Genoma Viral , Humanos , Pulmão/virologia , Masculino , Espectrometria de Massas , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/ultraestrutura , Células VeroRESUMO
Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.
Assuntos
Infecções por Coronavirus/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Coronavirus/classificação , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Células HEK293 , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Células Vero , Internalização do VírusRESUMO
There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.
Assuntos
RNA Mensageiro/genética , RNA Viral/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Vacinas contra COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Feminino , Células HEK293 , Células HeLa , Humanos , Imunogenicidade da Vacina , Injeções Intramusculares , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/química , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Th1/imunologia , Potência de Vacina , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/genéticaRESUMO
Recognition of viral RNA by the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) initiates innate antiviral immune response. How the binding of viral RNA to and activation of the RLRs are regulated remains enigmatic. In this study, we identified ZCCHC3 as a positive regulator of the RLRs including RIG-I and MDA5. ZCCHC3 deficiency markedly inhibited RNA virus-triggered induction of downstream antiviral genes, and ZCCHC3-deficient mice were more susceptible to RNA virus infection. ZCCHC3 was associated with RIG-I and MDA5 and functions in two distinct processes for regulation of RIG-I and MDA5 activities. ZCCHC3 bound to dsRNA and enhanced the binding of RIG-I and MDA5 to dsRNA. ZCCHC3 also recruited the E3 ubiquitin ligase TRIM25 to the RIG-I and MDA5 complexes to facilitate its K63-linked polyubiquitination and activation. Thus, ZCCHC3 is a co-receptor for RIG-I and MDA5, which is critical for RLR-mediated innate immune response to RNA virus.
Assuntos
Proteína DEAD-box 58/metabolismo , Infecções por Vírus de RNA/imunologia , Vírus de RNA/fisiologia , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , RNA Viral/imunologia , Proteínas de Ligação a RNA/genética , Células THP-1 , Fatores de Transcrição/metabolismo , UbiquitinaçãoRESUMO
Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was previously undescribed, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and is known to regulate cell proliferation and neuronal development. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the proviral activity of DYRK1A is conserved across species using cells of nonhuman primate and human origin. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses.
Assuntos
COVID-19 , Internalização do Vírus , Animais , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/genética , COVID-19/metabolismo , Dipeptidil Peptidase 4 , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Quinases DyrkRESUMO
MOTIVATION: Exploring the association between drugs and targets is essential for drug discovery and repurposing. Comparing with the traditional methods that regard the exploration as a binary classification task, predicting the drug-target binding affinity can provide more specific information. Many studies work based on the assumption that similar drugs may interact with the same target. These methods constructed a symmetric graph according to the undirected drug similarity or target similarity. Although these similarities can measure the difference between two molecules, it is unable to analyze the inclusion relationship of their substructure. For example, if drug A contains all the substructures of drug B, then in the message-passing mechanism of the graph neural network, drug A should acquire all the properties of drug B, while drug B should only obtain some of the properties of A. RESULTS: To this end, we proposed a structure-inclusive similarity (SIS) which measures the similarity of two drugs by considering the inclusion relationship of their substructures. Based on SIS, we constructed a drug graph and a target graph, respectively, and predicted the binding affinities between drugs and targets by a graph convolutional network-based model. Experimental results show that considering the inclusion relationship of the substructure of two molecules can effectively improve the accuracy of the prediction model. The performance of our SIS-based prediction method outperforms several state-of-the-art methods for drug-target binding affinity prediction. The case studies demonstrate that our model is a practical tool to predict the binding affinity between drugs and targets. AVAILABILITY AND IMPLEMENTATION: Source codes and data are available at https://github.com/HuangStomach/SISDTA.
Assuntos
Descoberta de Drogas , Redes Neurais de Computação , Descoberta de Drogas/métodos , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/química , AlgoritmosRESUMO
Identification of host determinants of coronavirus infection informs mechanisms of pathogenesis and may provide novel therapeutic targets. Here, we demonstrate that the histone demethylase KDM6A promotes infection of diverse coronaviruses, including SARS-CoV, SARS-CoV-2, MERS-CoV and mouse hepatitis virus (MHV) in a demethylase activity-independent manner. Mechanistic studies reveal that KDM6A promotes viral entry by regulating expression of multiple coronavirus receptors, including ACE2, DPP4 and Ceacam1. Importantly, the TPR domain of KDM6A is required for recruitment of the histone methyltransferase KMT2D and histone deacetylase p300. Together this KDM6A-KMT2D-p300 complex localizes to the proximal and distal enhancers of ACE2 and regulates receptor expression. Notably, small molecule inhibition of p300 catalytic activity abrogates ACE2 and DPP4 expression and confers resistance to all major SARS-CoV-2 variants and MERS-CoV in primary human airway and intestinal epithelial cells. These data highlight the role for KDM6A-KMT2D-p300 complex activities in conferring diverse coronaviruses susceptibility and reveal a potential pan-coronavirus therapeutic target to combat current and emerging coronaviruses. One Sentence Summary: The KDM6A/KMT2D/EP300 axis promotes expression of multiple viral receptors and represents a potential drug target for diverse coronaviruses.
Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Histona Desmetilases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismoRESUMO
Drought and soil salinization substantially impact agriculture. While proline's role in enhancing stress tolerance is known, the exact molecular mechanism by which plants process stress signals and control proline synthesis under stress is still not fully understood. In tomato (Solanum lycopersicum L.), drought and salt stress stimulate nitric oxide (NO) production, which boosts proline synthesis by activating Δ1-pyrroline-5-carboxylate synthetase (SlP5CS) and Δ1-pyrroline-5-carboxylate reductase (SlP5CR) genes and the P5CR enzyme. The crucial factor is stress-triggered NO production, which regulates the S-nitrosylation of SlP5CR at Cys-5, thereby increasing its NAD(P)H affinity and enzymatic activity. S-nitrosylation of SlP5CR enables tomato plants to better adapt to changing NAD(P)H levels, boosting both SlP5CR activity and proline synthesis during stress. By comparing tomato lines genetically modified to express different forms of SlP5CR, including a variant mimicking S-nitrosylation (SlP5CRC5W), we found that SlP5CRC5W plants show superior growth and stress tolerance. This is attributed to better P5CR activity, proline production, water use efficiency, reactive oxygen species scavenging, and sodium excretion. Overall, this study demonstrates that tomato engineered to mimic S-nitrosylated SlP5CR exhibits enhanced growth and yield under drought and salt stress conditions, highlighting a promising approach for stress-tolerant tomato cultivation.
Assuntos
Secas , Engenharia Genética , Plantas Geneticamente Modificadas , Pirrolina Carboxilato Redutases , Solanum lycopersicum , Solanum lycopersicum/genética , Pirrolina Carboxilato Redutases/genética , Pirrolina Carboxilato Redutases/metabolismo , delta-1-Pirrolina-5-Carboxilato Redutase , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismoRESUMO
Adolescents are high-risk population for major depressive disorder. Executive dysfunction emerges as a common feature of depression and exerts a significant influence on the social functionality of adolescents. This study aimed to identify the multimodal co-varying brain network related to executive function in adolescent with major depressive disorder. A total of 24 adolescent major depressive disorder patients and 43 healthy controls were included and completed the Intra-Extra Dimensional Set Shift Task. Multimodal neuroimaging data, including the amplitude of low-frequency fluctuations from resting-state functional magnetic resonance imaging and gray matter volume from structural magnetic resonance imaging, were combined with executive function using a supervised fusion method named multimodal canonical correlation analysis with reference plus joint independent component analysis. The major depressive disorder showed more total errors than the healthy controls in the Intra-Extra Dimensional Set Shift task. Their performance on the Intra-Extra Dimensional Set Shift Task was negatively related to the 14-item Hamilton Rating Scale for Anxiety score. We discovered an executive function-related multimodal fronto-occipito-temporal network with lower amplitude of low-frequency fluctuation and gray matter volume loadings in major depressive disorder. The gray matter component of the identified network was negatively related to errors made in Intra-Extra Dimensional Set Shift while positively related to stages completed. These findings may help to deepen our understanding of the pathophysiological mechanisms of cognitive dysfunction in adolescent depression.
Assuntos
Transtorno Depressivo Maior , Função Executiva , Imageamento por Ressonância Magnética , Imagem Multimodal , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Adolescente , Função Executiva/fisiologia , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Neuroimagem/métodos , Cognição/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Mapeamento Encefálico/métodosRESUMO
Natriuretic peptide receptor-C (NPR-C) is highly expressed in adipose tissues and regulates obesity-related diseases; however, the detailed mechanism remains unknown. In this research, we aimed to explore the potential role of NPR-C in cold exposure and high-fat/high-sugar (HF/HS) diet-induced metabolic changes, especially in regulating white adipose tissue (WAT) mitochondrial function. Our findings showed that NPR-C expression, especially in epididymal WAT (eWAT), was reduced after cold exposure. Global Npr3 (gene encoding NPR-C protein) deficiency led to reduced body weight, increased WAT browning, thermogenesis, and enhanced expression of genes related to mitochondrial biogenesis. RNA-sequencing of eWAT showed that Npr3 deficiency enhanced the expression of mitochondrial respiratory chain complex genes and promoted mitochondrial oxidative phosphorylation in response to cold exposure. In addition, Npr3 KO mice were able to resist obesity induced by HF/HS diet. Npr3 knockdown in stromal vascular fraction (SVF)-induced white adipocytes promoted the expression of proliferator-activated receptor gamma coactivator 1α (PGC1α), uncoupling protein one (UCP1), and mitochondrial respiratory chain complexes. Mechanistically, NPR-C inhibited cGMP and calcium signaling in an NPR-B-dependent manner but suppressed cAMP signaling in an NPR-B-independent manner. Moreover, Npr3 knockdown induced browning via AKT and p38 pathway activation, which were attenuated by Npr2 knockdown. Importantly, treatment with the NPR-C-specific antagonist, AP-811, decreased WAT mass and increased PGC-1α, UCP1, and mitochondrial complex expression. Our findings reveal that NPR-C deficiency enhances mitochondrial function and energy expenditure in white adipose tissue, contributing to improved metabolic health and resistance to obesity.
Assuntos
Tecido Adiposo Branco , Mitocôndrias , Receptores do Fator Natriurético Atrial , Animais , Tecido Adiposo Branco/metabolismo , Camundongos , Receptores do Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/genética , Mitocôndrias/metabolismo , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL , Respiração Celular , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Obesidade/genéticaRESUMO
Li-rich Mn-based cathode materials (LRMO) are promising for enhancing energy density of all-solid-state batteries (ASSBs). Nonetheless, the development of efficient Li+/e- pathways is hindered by the poor electrical conductivity of LRMO cathodes and their incompatible interfaces with solid electrolytes (SEs). Herein, we propose a strategy of in-situ bulk/interfacial structure design to construct fast and stable Li+/e- pathways by introducing Li2WO4, which reduces the energy barrier for Li+ migration and enhances the stability of the surface oxygen structure. The reversibility of oxygen redox was improved, and the voltage decay of the LRMO cathode was addressed significantly. As a result, the bulk structure of the LRMO cathodes and the high-voltage solid-solid interfacial stability are improved. Therefore, the ASSBs achieve a high areal capacity (â¼3.15 mAh/cm2) and outstanding cycle stability of ≥1200 cycles with 84.1% capacity retention at 1 C at 25 °C. This study offers new insights into LRMO cathode design strategies for ASSBs, focusing on ultrastable high-voltage interfaces and high-loading composite electrodes.
RESUMO
Although sifting functional genes has been discussed for years, traditional selection methods tend to be ineffective in capturing potential specific genes. First, typical methods focus on finding features (genes) relevant to class while irrelevant to each other. However, the features that can offer rich discriminative information are more likely to be the complementary ones. Next, almost all existing methods assess feature relations in pairs, yielding an inaccurate local estimation and lacking a global exploration. In this paper, we introduce multi-variable Area Under the receiver operating characteristic Curve (AUC) to globally evaluate the complementarity among features by employing Area Above the receiver operating characteristic Curve (AAC). Due to AAC, the class-relevant information newly provided by a candidate feature and that preserved by the selected features can be achieved beyond pairwise computation. Furthermore, we propose an AAC-based feature selection algorithm, named Multi-variable AUC-based Combined Features Complementarity, to screen discriminative complementary feature combinations. Extensive experiments on public datasets demonstrate the effectiveness of the proposed approach. Besides, we provide a gene set about prostate cancer and discuss its potential biological significance from the machine learning aspect and based on the existing biomedical findings of some individual genes.
Assuntos
Algoritmos , Aprendizado de Máquina , Área Sob a Curva , Curva ROCRESUMO
BACKGROUND: Existing studies have found that circular RNAs (circRNAs) act as sponges for micro RNAs (miRNAs) to control downstream genes. However, the specific functionalities and mechanisms of circRNAs in human clear cell renal cell carcinoma (ccRCC) have yet to be thoroughly investigated. METHODS: Patient cohorts from online databases were used to screen candidate circRNAs, while another cohort from our hospital was obtained for validation. CircSOD2 was identified as a potential oncogenic target, and its relevant characteristics were investigated during ccRCC progression through various assays. A positive feedback loop containing downstream miRNA and its target gene were identified using bioinformatics and validated by luciferase reporter assays, RNA pull-down, and high-throughput sequencing. RESULTS: CircSOD2 expression was elevated in tumor samples and significantly correlated with overall survival (OS) and the tumor stage of ccRCC patients, which appeared in the enhanced proliferation, invasion, and migration of tumor cells. Through competitive binding to circSOD2, miR-532-3p can promote the expression of PAX5 and the progression of ccRCC, and such regulation can be salvaged by miR-532-3p inhibitor. CONCLUSION: A novel positive feedback loop, PAX5/circSOD2/miR-532-3p/PAX5 was identified in the study, indicating that the loop may play an important role in the diagnosis and prognostic prediction in ccRCC patients.
Assuntos
Carcinoma de Células Renais , Proliferação de Células , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , MicroRNAs , RNA Circular , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Pessoa de Meia-Idade , Masculino , Carcinogênese/genética , Carcinogênese/patologia , Movimento Celular/genética , Fator de Transcrição PAX5/metabolismo , Fator de Transcrição PAX5/genética , Oncogenes/genética , Sequência de Bases , Progressão da Doença , Invasividade Neoplásica , Reprodutibilidade dos TestesRESUMO
Although saline-alkali stress can improve tomato quality, the detailed molecular processes that balance stress tolerance and quality are not well-understood. Our research links nitric oxide (NO) and γ-aminobutyric acid (GABA) with the control of root malate exudation and fruit malate storage, mediated by aluminium-activated malate transporter 9/14 (SlALMT9/14). By modifying a specific S-nitrosylated site on pyruvate-dependent GABA transaminase 1 (SlGABA-TP1), we have found a way to enhance both plant's saline-alkali tolerance and fruit quality. Under saline-alkali stress, NO levels vary in tomato roots and fruits. High NO in roots leads to S-nitrosylation of SlGABA-TP1/2/3 at Cys316/258/316, reducing their activity and increasing GABA. This GABA then reduces malate exudation from roots and affects saline-alkali tolerance by interacting with SlALMT14. In fruits, a moderate NO level boosts SlGABA-TP1 expression and GABA breakdown, easing GABA's block on SlALMT9 and increasing malate storage. Mutants of SlGABA-TP1C316S that do not undergo S-nitrosylation maintain high activity, supporting malate movement in both roots and fruits under stress. This study suggests targeting SlGABA-TP1Cys316 in tomato breeding could significantly improve plant's saline-alkali tolerance and fruit quality, offering a promising strategy for agricultural development.
Assuntos
Álcalis , Frutas , Malatos , Óxido Nítrico , Raízes de Plantas , Solanum lycopersicum , Ácido gama-Aminobutírico , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos dos fármacos , Malatos/metabolismo , Óxido Nítrico/metabolismo , Álcalis/farmacologia , Ácido gama-Aminobutírico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Frutas/genética , Frutas/efeitos dos fármacos , 4-Aminobutirato Transaminase/metabolismo , 4-Aminobutirato Transaminase/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacosRESUMO
Soil nitrogen (N) significantly influences the interaction between plants and pathogens, yet its impact on host defenses and pathogen strategies via alterations in plant metabolism remains unclear. Through metabolic and genetic studies, this research demonstrates that high-N-input exacerbates tomato bacterial wilt by altering γ-aminobutyric acid (GABA) metabolism of host plants. Under high-N conditions, the nitrate sensor NIN-like protein 7 (SlNLP7) promotes the glutamate decarboxylase 2/4 (SlGAD2/4) transcription and GABA synthesis by directly binding to the promoters of SlGAD2/4. The tomato plants with enhanced GABA levels showed stronger immune responses but remained susceptible to Ralstonia solanacearum. This led to the discovery that GABA produced by the host actually heightens the pathogen's virulence. We identified the R. solanacearum LysR-type transcriptional regulator OxyR protein, which senses host-derived GABA and, upon interaction, triggers a response involving protein dimerization that enhances the pathogen's oxidative stress tolerance by activating the expression of catalase (katE/katGa). These findings reveal GABA's dual role in activating host immunity and enhancing pathogen tolerance to oxidative stress, highlighting the complex relationship between tomato plants and R. solanacearum, influenced by soil N status.
Assuntos
Interações Hospedeiro-Patógeno , Nitrogênio , Estresse Oxidativo , Doenças das Plantas , Imunidade Vegetal , Ralstonia solanacearum , Solanum lycopersicum , Ácido gama-Aminobutírico , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/patogenicidade , Ácido gama-Aminobutírico/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Nitrogênio/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Regulação da Expressão Gênica de Plantas , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , VirulênciaRESUMO
Flowering time is a key agronomic trait that directly affects soybean yield. Both APETALA1 (AP1) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) regulate flowering time in soybean, but their genetic and regulatory relationships have not been clarified. Here, we report that AP1c physically interacted with two SOC1 proteins, SOC1a and SOC1b, and that these SOC1s upregulated the expression of AP1c, promoting flowering. Moreover, AP1c repressed the expression of the SOC1s by directly binding to their promoters, thus preventing plants from flowering too early. These findings indicate that AP1c and SOC1s form a regulatory feedback loop that regulates flowering time. Importantly, we identified an exceptional allele, AP1cG, that was selected for during soybean domestication and promotes the early-flowering phenotype in cultivated soybean. Collectively, our work identifies a previously unknown allelic combination potentially useful for both classical and molecular soybean breeding.
RESUMO
The pathophysiology of Primary Open Angle Glaucoma (POAG) remains poorly understood. Through proteomic analysis of aqueous humour (AH) from POAG patients, we aim to identify changes in protein composition of these samples compared to control samples. High resolution mass spectrometry-based TMT6plex quantitative proteomics analysis is performed on AH samples collected from POAG patients, and compared against a control group of patients with cataracts. Data are available via ProteomeXchange with identifier PXD033153. 1589 proteins were quantified from the aqueous samples using Proteome Discoverer version 2.2 software. Among these proteins, 210 were identified as unique master proteins. The proteins which were up or down-regulated by ±3 fold-change were considered significant. Human neuroblastoma full-length cDNA clone CS0DD006YL02 was significantly upregulated in patients with severe POAG on >2 medications, while actin, cytoplasmic 1, V2-7 protein (fragment), immunoglobulin-like polypeptide 1 and phosphatidylethanolamine-binding protein 4 were only present in these patients with severe POAG on >2 medications. Beta-crystallin B1 and B2, Gamma-crystallin C, D and S were significantly downregulated in the severe POAG ≤2 glaucoma medications group. Beta-crystallin B2, Gamma-crystallin D and GCT-A9 light chain variable region (fragment) were significantly downregulated in the non-severe POAG group. Actin, cytoplasmic 1 was significantly upregulated in subjects with severe POAG who required more than 2 glaucoma medications. Crystallins (Beta-crystallin B1 and B2, Gamma-crystallin C, D and S) were significantly downregulated in subjects with severe POAG who required less than 2 glaucoma medications.
Assuntos
Humor Aquoso , Proteínas do Olho , Glaucoma de Ângulo Aberto , Proteômica , Humanos , Glaucoma de Ângulo Aberto/metabolismo , Humor Aquoso/metabolismo , Feminino , Masculino , Proteínas do Olho/metabolismo , Idoso , Pessoa de Meia-Idade , Proteômica/métodos , Pressão Intraocular/fisiologia , Povo AsiáticoRESUMO
Microglia, resident immune cells in the central nervous system, constantly monitor the state of the surrounding brain activity. The animal model induced by sleep deprivation (SD) is widely used to study the pathophysiological mechanisms of insomnia and bipolar disorder. However, it remains unclear whether SD affects behaviors in young and aged male mice and microglia in various brain regions. In this study, we confirmed brain region-specific changes in microglial density and morphology in the accumbens nucleus (Acb), amygdala (AMY), cerebellum (Cb), corpus callosum (cc), caudate putamen, hippocampus (HIP), hypothalamus (HYP), medial prefrontal cortex (mPFC), and thalamus (TH) of young mice. In addition, the density of microglia in old mice was higher than that in young mice. Compared with young mice, old mice showed a markedly increased microglial size, decreased total length of microglial processes, and decreased maximum length. Importantly, we found that 48-h SD decreased microglial density and morphology in old mice, whereas SD increased microglial density and morphology in most observed brain regions in young mice. SD-induced hyperactivity was observed only in young mice but not in old mice. Moreover, microglial density (HIP, AMY, mPFC, CPu) was significantly positively correlated with behaviors in SD- and vehicle-treated young mice. Contrarily, negative correlations were shown between the microglial density (cc, Cb, TH, HYP, Acb, AMY) and behaviors in vehicle-treated young and old mice. These results suggest that SD dysregulates the homeostatic state of microglia in a region- and age-dependent manner. Microglia may be involved in regulating age-related behavioral responses to SD.
Assuntos
Microglia , Privação do Sono , Camundongos , Masculino , Animais , Encéfalo , Hipocampo , Tonsila do CerebeloRESUMO
There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the onset of infection, which we confirmed by electron and immunofluorescence microscopy. Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a detailed characterization of genes, cell types, and cell state changes associated with SARS-CoV-2 infection in the human airway.
Assuntos
Brônquios/patologia , COVID-19/diagnóstico , Expressão Gênica , SARS-CoV-2/isolamento & purificação , Análise de Célula Única/métodos , Adulto , Brônquios/virologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Células Cultivadas , Epitélio/patologia , Epitélio/virologia , Humanos , Imunidade Inata , Estudos Longitudinais , SARS-CoV-2/genética , Transcriptoma , Tropismo ViralRESUMO
Water incorporated with supramolecular building blocks in organic solvents can play a key role in the circularly polarized luminescence (CPL) inversion and amplification of supramolecular assemblies. Herein, we demonstrate that fine-tuning the water content regulated the assembly structure evolution and made the circular dichroism and CPL sign of the system undergo intriguing inversion, reinversion, and amplification processes based on a unique and interesting glutamide-cyanostilbene system, as supported by morphology, spectroscopic observations, and time-dependent density functional theory calculation.