Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(43): 17453-17462, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39418182

RESUMO

The fine control of the nanogap and morphology of metal nanoparticles (NPs) has always been an obstacle, hindering the development and application of surface-enhanced Raman scattering (SERS) quantitative detection. Here, Au/4-mercaptobenzoic acid@Ag@Au-Ag bimetal core-shell nanocubes (NCs) with a "crescent arc" facet (C-Au/4MBA@Ag NCs) as a highly reliable and sensitive surface-enhanced Raman scattering SERS substrate is proposed for the first time. The bifunctional internal standard (IS) molecules (4MBA) govern the morphology of metal shells to maintain cubic configuration and provide calibration for SERS signals' flotation. In parallel, the controllable curvature of the C-Au/4MBA@Ag NCs is directly modulated by adjusting the relative rates of the galvanic replacement and co-reduction reaction, which generates a controllable interparticle nanogap to offer large depositing spaces for analytes and improve authoritative SERS signals' enhancement. The proposed C-Au/4MBA@Ag NCs exhibit an enhancement factor of up to 4.8 × 1010 and contribute to the ultralow RSD (7.9%). These C-Au/4MBA@Ag NCs also enable the detection of hazardous pesticide residues such as methamidophos and thiram in herbal plants with a complex matrix, with an average detection accuracy of up to 96%. In summary, this study achieves a fine control strategy of the "crescent arc" surface for improving SERS performance and explores the practical application potential for accurate and sensitive Raman detection of hazardous substances.

2.
J Environ Manage ; 359: 120986, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696849

RESUMO

The efficient, safe and eco-friendly disposal of the chromium-containing sludge (CCS) has attracted an increasing concern. In this study, Co-processing of CCS was developed via employing sintering and ironmaking combined technology for its harmless disposal and resource utilization. Crystalline phase and valence state transformation of chromium (Cr), technical feasibility assessment, leaching risk, characteristics of sintered products, and pollutant release during CCS co-processing were investigated through a series of laboratory-scale sintering pot experiments and large scale industrial trials. The results showed that the content of Cr(VI) in sintered products first increased then decreased with increasing temperature ranges of 300 °C-800 °C, and reached a maximum of 2189.64 mg/kg at 500 °C. 99.99% of Cr(VI) can be reduced to Cr(III) at above 1000 °C, which was attributed to the transformation of the Cr(VI)-containing crystalline phases (such as, MgCrO4 and CaCrO4) to the (Mg, Fe2+)(Cr, Al, Fe3+)2O4. The industrial trial results showed that adding 0.5 wt‰ CCS to sintering feed did not have adverse effects on the properties of the sintered ore and the plant's operating stability. The tumbler index of sinter was above 78% and the leaching concentrations of TCr (0.069 mg/L) was significantly lower than the Chinese National Standard of 1.0 mg/L (GB5085.3-2007). The TCr contents of sintering dust and blast furnace gas (BFG) scrubbing water were less than 0.19 wt‰ and 0.11 mg/L, respectively, which was far below the regulatory limit (1.5 mg/L, GB13456-2012). The mass balance evaluation results indicated that at least 89.9% of the Cr in the CCS migrated into the molten iron in the blast furnace (BF), which became a useful supplement to the molten iron. This study provided a new perspective strategy for the safe disposal and resource utilization of CCS in iron and steel industry.


Assuntos
Cromo , Esgotos , Cromo/química , Esgotos/química , Ferro/química
3.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338410

RESUMO

Ellagic acid, known for its various biological activities, is widely used. Ellagic acid from pomegranate peels is safe for consumption, while that from gallnuts is only suitable for external use. However, there is currently no effective method to confirm the source of ellagic acid. Therefore, this study establishes an analysis method using ultra-high-performance liquid chromatography-electrospray ionization-high-resolution mass spectrometry (UHPLC-ESI-HR-MS) to identify the components of crude ellagic acid extracts from pomegranate peels and gallnuts. The analysis revealed that there was a mix of components in the crude extracts, such as ellagic acid, palmitic acid, oleic acid, stearic acid, and 9(10)-EpODE. Furthermore, it could be observed that ellagic acid extracted from gallnuts contained toxic substances such as anacardic acid and ginkgolic acid (15:1). These components could be used to effectively distinguish the origin of ellagic acid from pomegranate peels or gallnuts. Additionally, a rapid quantitative analysis method using UHPLC-ESI-MS with multiple reaction monitoring (MRM) mode was developed for the quality control of ellagic acid products, by quantifying anacardic acid and ginkgolic acid (15:1). It was found that one of three ellagic acid health care products contained ginkgolic acid (C15:1) and anacardic acid at more than 1 ppm.


Assuntos
Ácidos Anacárdicos , Punica granatum , Salicilatos , Espectrometria de Massas por Ionização por Electrospray/métodos , Extratos Vegetais/química , Ácido Elágico/química , Cromatografia Líquida de Alta Pressão/métodos
4.
Angew Chem Int Ed Engl ; : e202413429, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252053

RESUMO

The lanthanide contraction involves a reduction in atomic radius among f-block elements below the expected level. A similar contraction is observed in group-16 elements. The atomic radius of Se (117 pm) is slightly larger than that of S (104 pm) arising from the presence of d electrons, compared to the significant increase in atomic radius from O (73 pm) to S. This lanthanide-like contraction contributes to Se's robust oxidative resistance. Here we report a selective oxidation strategy utilizing Se's strong antioxidative property to remove coexisting narrow-band gap Te impurities from Se feedstocks. This strategy selectively oxidizes volatile Te impurities into involatile TeO2 that remains in the evaporation source, while only volatile Se deposits onto the substrate during the thermal-evaporation deposition process. This enables the fabrication of high-purity Se films possessing a wide band gap of 1.88 eV, ideally suited to the optimal band gap for indoor photovoltaics (IPVs). The resulting Se photovoltaics exhibit an efficiency of 20.1 % under 1000-lux indoor illumination, outperforming market-dominant amorphous silicon and all types of lead-free perovskite IPVs. Unencapsulated Se devices show no efficiency degradation after 20,000 hours of storage in ambient atmosphere.

5.
Crit Rev Food Sci Nutr ; 63(19): 3519-3537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34658279

RESUMO

Recently, food safety issues caused by contaminants have aroused great public concern. The development of innovative and efficient sensing techniques for contaminants detection in food matrix is in urgent demand. As fluorescent nanomaterials, noble metal nanoclusters have attracted much attention because of their ease of synthesis, enhanced catalytic activity and biocompatibility, and most importantly, excellent photoluminescence property that provides promising analytical applications. This review comprehensively introduced the synthesis method of noble metal nanoclusters, and summarized the application of metal nanoclusters as fluorescent sensing materials in the detection of pollutants, including pesticides, heavy metal, mycotoxin, food additives, and other contaminants in food. The detection mechanism of pesticide residues mostly relies on the inhibition of natural enzymes. For heavy metals, the detection mechanism is mainly related to the interaction between metal ions and nanoclusters or ligands. It is evidenced that metal nanoclusters have great potential application in the field of food safety monitoring. Moreover, challenges and future trends of nanoclusters were discussed. We hope that this review can provide insights and directions for the application of nanoclusters in contaminants detection.


Assuntos
Metais Pesados , Nanoestruturas , Praguicidas , Inocuidade dos Alimentos/métodos , Nanoestruturas/química , Corantes
6.
J Nanobiotechnology ; 21(1): 255, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542245

RESUMO

The COVID-19 pandemic, which originated in Hubei, China, in December 2019, has had a profound impact on global public health. With the elucidation of the SARS-CoV-2 virus structure, genome type, and routes of infection, a variety of diagnostic methods have been developed for COVID-19 detection and surveillance. Although the pandemic has been declared over, we are still significantly affected by it in our daily lives in the post-pandemic era. Among the various diagnostic methods, nanomaterials, especially metallic nanomaterials, have shown great potential in the field of bioanalysis due to their unique physical and chemical properties. This review highlights the important role of metallic nanosensors in achieving accurate and efficient detection of COVID-19 during the pandemic outbreak and spread. The sensing mechanisms of each diagnostic device capable of analyzing a range of targets, including viral nucleic acids and various proteins, are described. Since SARS-CoV-2 is constantly mutating, strategies for dealing with new variants are also suggested. In addition, we discuss the analytical tools needed to detect SARS-CoV-2 variants in the current post-pandemic era, with a focus on achieving rapid and accurate detection. Finally, we address the challenges and future directions of metallic nanomaterial-based COVID-19 detection, which may inspire researchers to develop advanced biosensors for COVID-19 monitoring and rapid response to other virus-induced pandemics based on our current achievements.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Teste para COVID-19
7.
J Nanobiotechnology ; 21(1): 314, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667389

RESUMO

Second near-infrared (NIR-II) fluorescence imaging in the range of 1000-1700 nm has great prospects for in vivo imaging and theranostics monitoring. At present, few NIR-II probes with theranostics properties have been developed, especially the high-performance organic theranostics material remains underexploited. Herein, we demonstrate a selenium (Se)-tailoring method to develop high-efficient NIR-II imaging-guided material for in vivo cancer phototheranostics. Via Se-tailoring strategy, conjugated oligomer TPSe-based nanoparticles (TPSe NPs) achieve bright NIR-II emission up to 1400 nm and exhibit a relatively high photothermal conversion efficiency of 60% with good stability. Moreover, the TPSe NPs demonstrate their photothermal ablation of cancer cells in vitro and tumor in vivo with the guidance of NIR-II imaging. It is worth noting that the TPSe NPs have good biocompatibility without obvious side effects. Thus, this work provides new insight into the development of NIR-II theranostics agents.


Assuntos
Nanopartículas , Neoplasias , Selênio , Humanos , Imagem Óptica , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
8.
Ecotoxicol Environ Saf ; 239: 113668, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623151

RESUMO

Exogenous pollution of Chinese medicinal materials by pesticide residues and heavy metal ions has attracted great attention. Relying on the rapid development of nanotechnology and multidisciplinary fields, fluorescent techniques have been widely applied in contaminant detection and pollution monitoring due to their advantages of simple preparation, low cost, high throughput and others. Most importantly, synchronous detection of multi-targets has always been pursued as one of the major goals in the design of fluorescent probes. Herein, we firstly develop a simultaneous sensing method for methyl-paraoxon (MP) and Nickel ion (Ni, Ⅱ) by using carbon based fluorescent nanocomposite with ratiometric signal readout and nanozyme. Notably, the designed system showed excellent effectiveness even when the two pollutants co-exist. Under the optimum conditions, this method provides low limits of detection of 1.25 µM for methyl-paraoxon and 0.01 µM for Ni (Ⅱ). To further verify the reliability, recovery studies of these two analytes were performed on ginseng radix et rhizoma, nelumbinis semen, and water samples. In addition, smartphone-based visual analysis has been introduced to expand its applicability in point of care detection. This work not only expands the application of the dual-mode approach to pollutant detection, but also provides insights into the analysis of multiple pollutants in a single assay.


Assuntos
Poluentes Ambientais , Resíduos de Praguicidas , Poluentes Ambientais/análise , Corantes Fluorescentes , Limite de Detecção , Paraoxon/análise , Resíduos de Praguicidas/análise , Reprodutibilidade dos Testes
9.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499083

RESUMO

Glucosinolates (GLS) were extracted and purified from Lepidium meyenii (Maca) root. Purified GLS were analyzed without desulfation by UPLC-ESI-MS. Glucosinolates were decomposed into benzyl isothiocyanate (BITC) by thioglucosidase. DPPH radical scavenging activity, ABTS radical scavenging activity, and reducing power were used to evaluate antioxidant activity of Maca crude extract (MCE), total GLS, and BITC. Maca crude extract showed the highest antioxidant activity among them, and BITC showed no antioxidant activity at concentrations less than 10 mg/mL. Cytotoxicity on five human cancer cell lines and the inhibition rate of NO production were used to evaluate the activity of anti-cancer and anti-inflammatory of total GLS and BITC. The inhibition rate of NO production of 50 µg/mL BITC can reach 99.26% and the cell viability of 100 µg/mL BITC on five tumor cell lines is less than 3%. The results show that BITC may be used as a promising anti-cancer and anti-inflammatory drug.


Assuntos
Lepidium , Humanos , Glucosinolatos/farmacologia , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia
10.
Small ; 17(43): e2101487, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34151518

RESUMO

As a sustainable and clean water production technology, solar thermal water evaporation has been extensively studied in the past few years. One challenge is that upon operation, salt would form on surface of the solar absorbers leading to inefficient water supply and light absorption and thus much reduced water vaporization rate. To address this problem, a simple solar evaporator based on an array of aligned millineedles for efficient solar water evaporation and controlled site-specific salt formation is demonstrated. The maximum solar evaporation rate achieved is 2.94 kg m-2 h-1 under one Sun irradiation in brine of high salinity (25 wt% NaCl), achieving energy conversion efficiency of 94.5% simultaneously. More importantly, the spontaneously site-specific salt formation on the tips of millineedles endows this solar evaporator with salt harvesting capacity. Rationally separating the clean water and salt from brine by condensation and gravity assistance, this tip-preferential crystallization solar evaporator is not affected by the salt clogging compared with conventional 2D solar evaporators. This study provides new insights on the design of solar evaporators and advances their applications in sustainable seawater desalination and wastewater management.


Assuntos
Energia Solar , Purificação da Água , Água do Mar , Cloreto de Sódio , Luz Solar
11.
Small ; 17(43): e2103127, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34510742

RESUMO

Conjugated polymers (CPs) are capable of coordinating the electron coupling phenomenon to bestow powerful optoelectronic features. The light-harvesting and light-amplifying properties of CPs are extensively used in figuring out the biomedical issues with special emphasis on accurate diagnosis, effective treatment, and precise theranostics. This review summarizes the recent progress of CP materials in bioimaging, cancer therapeutics, and introduces the design strategies by rationally tuning the optical properties. The recent advances of CPs in bioimaging applications are first summarized and the challenges to clear the future directions of CPs in the respective area are discussed. In the following sections, the focus is on the burgeoning applications of CPs in phototherapy of the tumor, and illustrates the underlying photo-transforming mechanism for further molecular designing. Besides, the recent progress in the CPs-assistant drug therapy, mainly including drug delivery, gene therapeutic, the optical-activated reversion of tumor resistance, and synergistic therapy has also been discussed elaborately. In the end, the potential challenges and future developments of CPs on cancer diagnosis and therapy are also illuminated for the improvement of optical functionalization and the promotion of clinical translation.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fototerapia , Polímeros , Nanomedicina Teranóstica
12.
Biomed Chromatogr ; 35(12): e5211, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34216391

RESUMO

Chiral compounds commonly exist in traditional Chinese medicine (TCM), but little research on the quality control of TCM has been conducted. In this study, a new strategy is proposed, taking Yuanhuzhitong tablet [YHZT, consisting of Radix Angelicae Dahuricae and Rhizoma Corydalis (Yan Hu Suo, YHS)] for example, which is based on chiral isomer ratio analysis to monitor the production process of Chinese patent medicine companies. In the process of content determination for tetrahydropalmatine (THP) in YHZT from different companies, noticeable differences were observed in their chromatographic behaviors. It is known that THP has two enantiomers, naturally coexisting in YHS as a racemic mixture, so we prepared THP twice and subsequently performed chiral separation analysis using supercritical fluid chromatography. As a result, the peak area ratios of two enantiomers from different companies varied remarkably, demonstrating that some companies did not probably manufacture YHZT products in accordance with the prescription proportion, used inferior or extracted YSH crude materials in the production process, and added raw chemical medicine in the production to reach the standard and lower the costs. In conclusion, the peak area ratio of chiral isomers could be taken as a key quality index.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Medicamentos de Ervas Chinesas , Alcaloides de Berberina/análise , Alcaloides de Berberina/química , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/normas , Estereoisomerismo , Comprimidos
13.
Phytother Res ; 35(12): 6706-6719, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34533247

RESUMO

Lepidium meyenii (Maca) contains several active components, including alkaloids, glucosinolates, isothiocyanates, polysaccharides, polyphenols, and sterols, which make it have the traditional therapeutic uses. In this paper, we summarized the analytical progress of the active components associated with alkaloids, polysaccharides, glucosinolates, sterols, free fatty acids, flavonoids, and natural phenols in Maca by mass spectrometry (MS). Due to the effect of color and type on active components in Maca, we summarized the study of quality evaluation about Maca according to the type and the content of active components such as glucosinolates, essential oils, macamides, and macaenes by MS. Additionally, the research on the change of active components in Maca at different growth stages by MS will be beneficial to full utilization of active components in Maca and other natural resources. We reviewed the study in the visible distribution of amino acids, amide alkaloids, imidazolium alkaloids, and saccharides in Maca by imaging mass spectrometry (IMS). We also reviewed the pharmacology value associated with improvement of reproductive function, anti-stress response, anti-osteoporosis, antitumor activity, clinical research and toxicity of Maca, and so forth. Nevertheless, due to individual differences and limitations of the subjects, further high-quality studies are needed to confirm the clinical efficacy of the plant.


Assuntos
Lepidium , Óleos Voláteis , Humanos , Extratos Vegetais/farmacologia , Polissacarídeos
14.
Zhongguo Zhong Yao Za Zhi ; 46(1): 62-71, 2021 Jan.
Artigo em Zh | MEDLINE | ID: mdl-33645053

RESUMO

Chinese medicinal material is the foundation of traditional Chinese medicine(TCM) industry. Its quality is not only closely related to the health of residents but also the key to the development of the TCM industry. Pesticide residues, heavy metals and mycotoxins are the major pollutants of Chinese medicinal materials. In recent years, quite a number of rapid detection methods for pollutants have been constructed. Among them, surface-enhanced Raman scattering(SERS), which has been widely used in food chemistry, environmental analysis, and other fields because of its speediness and non-destructiveness, shows its great potential in the pollutant detection in Chinese medicinal material. This paper firstly reviews the application of SERS for the detection of common pollutants in Chinese medicinal material. We then discussed the characteristics and advantages of SERS technique for pesticide detection, including the principle, SERS substrate design, specific recognition, etc. Finally, simultaneous detection of multiple pesticide residues in Chinese medicinal material was explored.


Assuntos
Poluentes Ambientais , Resíduos de Praguicidas , China , Medicina Tradicional Chinesa , Resíduos de Praguicidas/análise , Análise Espectral Raman
15.
Ecotoxicol Environ Saf ; 179: 17-23, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31022651

RESUMO

A novel dual-mode analytical method by employing nanozyme was developed for the detection of organophosphorus pesticides (OPP) for the first time. The detection principle is that the pesticide could be hydrolyzed to para-nitrophenol (p-NP) in the presence of nanoceria as nanozyme. p-NP exhibits the bright yellow color, and its color intensity has a positive correlation with the pesticide concentration. Meanwhile, the characteristic absorption peak at 400 nm of p-NP increases gradually with the raised concentration of pesticide. Therefore, a dual-mode method including smartphone-based colorimetric and spectroscopic strategies was rationally developed. Herein, methyl-paraoxon was selected as the representative compound. Under the optimum conditions, the detection limits of both two strategies were calculated to be 0.42 µmol L-1. Finally, the present method was successfully applied in three edible medicinal plants (Semen nelumbinis, Semen Armeniacae Amarum, Rhizoma Dioscoreae). The present work offers a reliable and convenient approach for routine detection of pesticide based on two different detection mechanisms.


Assuntos
Cério/química , Poluentes Ambientais/análise , Nanopartículas/química , Compostos Organofosforados/análise , Praguicidas/análise , Plantas Medicinais/química , Colorimetria/métodos , Limite de Detecção , Nitrofenóis/química , Paraoxon/análogos & derivados , Paraoxon/análise , Espectrofotometria/métodos
16.
Mikrochim Acta ; 186(2): 66, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30627852

RESUMO

Nanoceria with a remarkable phosphatase mimicking activity was synthesized and used to catalyze the hydrolysis of phosphate esters in pH 10 solution. The catalytic effect of nanoceria was firstly investigated by selecting p-nitrophenyl phosphate as a model substrate. The pH value, incubation temperature, reaction time, and concentration of nanoceria were optimized. The catalytic effect was then confirmed by using methyl-paraoxon as a substrate. The p-nitrophenol anion released by the enzyme mimic is yellow and exerts an inner filter effect on the fluorescence of the carbon dots (with excitation/emission maxima at 400/520 nm). Response to methyl-paraoxon is linear in the 1.125-26.25 µmol L-1 concentration range. The method was applied to the determination of pesticides in spiked Panax quinquefolius and water samples. Recoveries ranged from 85 to 103% (n = 3). The technique is rapid, reliable, and can be used for on-site detection of pesticides and organophosphates. Graphical abstract Schematic presentation of a fluorometric technique for the detection of organophosphate compound and pesticide using nanoceria as a phosphatase mimic and an inner filter effect on the blue fluorescence of carbon dots (with excitation/emission maxima at 400/520 nm).

17.
Molecules ; 22(9)2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28846648

RESUMO

A rapid, sensitive and enzyme-based optical biosensor was applied for the determination of seven organophosphorus pesticides (OPPs), including the oxo forms (malaoxon, paraoxon, dibrom, and dichlorvos), the thio forms (malathion and parathion) and the mixed form (demeton) in Panax ginseng. The principal of the proposed method is that the fluorescence quenching effect of quantum dots (QDs) can be observed by enzyme-generated H2O2. The active centers of acetylcholinesterase (AChE) could be inhibited in the presence of pesticides, which caused decrease of the generated H2O2. Then, the inhibition efficiency of pesticide to AChE activity could be evaluated by measuring the fluorescence changes. Different from biosensors based on immobilized enzyme or self-assembling technique, the proposed biosensor demonstrated a good selectivity for the detection of oxo forms of OPPs. In the present study, the important experimental conditions of the proposed biosensor were investigated. Under the optimized conditions (incubation temperature, 35 °C; incubation time, 20 min; pH value, 8.0; detection time, 30 min; AChE concentration, 40.9 U/L; and choline oxidase (ChOx) concentration, 637.5 U/L), the limit of detection for the investigated oxo-form OPPs was no more than 0.05 µM, which suggested that the proposed method could be used for sensitive and selective determination of trace amounts of OPPs residues in real samples with complex matrices.


Assuntos
Compostos Organofosforados/análise , Praguicidas/análise , Pontos Quânticos/química , Técnicas Biossensoriais , Compostos de Cádmio , Enzimas Imobilizadas , Peróxido de Hidrogênio/química , Estrutura Molecular , Compostos Organofosforados/química , Praguicidas/química , Compostos de Selênio
18.
Molecules ; 20(8): 15304-18, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26307960

RESUMO

A micellar electrokinetic chromatography (MEKC) method was developed for the simultaneous determination of seven hydrophilic phenolic acids and four lipophilic tanshinones in three Salvia species. In normal MEKC mode using SDS as surfactant, the investigated 11 compounds could not be well separated. Therefore, several buffer modifiers including ß-cyclodextrins (ß-CD), ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) and organic solvents have been added to the buffer solution to improve the separation selectivity. Under the optimized conditions (BGE, 15 mM sodium tetraborate with 10 mM SDS, 5 mM ß-CD, 10 mM [bmim]BF4 and 15% ACN (v/v) as additives; buffer pH, 9.8; voltage, 20 kV; temperature, 25 °C), the 11 investigated analytes could achieve baseline separation in 34 min. The proposed MEKC was additionally validated by evaluating the linearity (R(2) ≥ 0.9965), LODs (0.27-1.39 µg·mL(-1)), and recovery (94.26%-105.17%), demonstrating this method was reproducible, accurate and reliable. Moreover, the contents of the 11 compounds in three Salvia species, including S. miltiorrhiza, S. przewalskii and S. castanea were analyzed. The result showed that the established MEKC method was simple and practical for the simultaneous determination of the hydrophilic and lipophilic bioactive components in Salvia species, which could be used to effectively evaluate the quality of these valued medicinal plants.


Assuntos
Abietanos/química , Cromatografia Capilar Eletrocinética Micelar/métodos , Interações Hidrofóbicas e Hidrofílicas , Hidroxibenzoatos/química , Salvia/química , Salvia/classificação , Dodecilsulfato de Sódio/química , Solventes/química
19.
J Sep Sci ; 37(24): 3738-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25296843

RESUMO

A capillary zone electrophoresis method was developed for the simultaneous determination of seven phenolic acids, including protocatechuic aldehyde (1), salvianolic acid C (2), rosmarinic acid (3), salvianolic acid A (4), danshensu (5), salvianolic acid B (6), and protocatechuic acid (7), in Danshen and related medicinal plants. A running buffer composed of 20 mM sodium tetraborate adjusted to pH 9.0, and containing 12 mM ß-cyclodextrin as modifier. Baseline separation was achieved within 17 min running at the voltage of 20 kV, temperature of 25°C and detection wavelength of 280 nm. The relative standard deviations of migration time ranged from 0.2 to 0.7% and the peak area ranged from 1.5 to 3.7% for the seven analytes, indicating the good repeatability of the proposed method. The method was extensively validated by evaluating the linearity (R(2) ≥ 0.9992), limits of detection (0.14-0.36 µg/mL), limits of quantification (0.47-1.19 µg/mL), and recovery (96.0-102.6%). Under the optimum conditions, samples of Danshen and related medicinal plants were analyzed using the developed method with high separation efficiency.


Assuntos
Hidroxibenzoatos/análise , Salvia/química , beta-Ciclodextrinas/química , Eletroforese Capilar , Estrutura Molecular
20.
Int J Mol Sci ; 15(6): 10492-507, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24921707

RESUMO

Lipidomics is an emerging field, where the structures, functions and dynamic changes of lipids in cells, tissues or body fluids are investigated. Due to the vital roles of lipids in human physiological and pathological processes, lipidomics is attracting more and more attentions. However, because of the diversity and complexity of lipids, lipid analysis is still full of challenges. The recent development of methods for lipid extraction and analysis and the combination with bioinformatics technology greatly push forward the study of lipidomics. Among them, mass spectrometry (MS) is the most important technology for lipid analysis. In this review, the methodology based on MS for lipid analysis was introduced. It is believed that along with the rapid development of MS and its further applications to lipid analysis, more functional lipids will be identified as biomarkers and therapeutic targets and for the study of the mechanisms of disease.


Assuntos
Lipídeos/análise , Espectrometria de Massas , Biologia Computacional , Hidrocarbonetos Iodados/química , Íons/química , Lipídeos/isolamento & purificação , Extração Líquido-Líquido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA