Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5350, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504089

RESUMO

Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification.


Assuntos
Biodiversidade , Clima Desértico , Fungos/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo , Solo/química , China , Ecossistema , Fungos/classificação , Fungos/crescimento & desenvolvimento , Geografia , Concentração de Íons de Hidrogênio , Modelos Teóricos , Plantas/classificação , Microbiologia do Solo , Especificidade da Espécie , Água/metabolismo
2.
Ying Yong Sheng Tai Xue Bao ; 25(3): 679-86, 2014 Mar.
Artigo em Zh | MEDLINE | ID: mdl-24984483

RESUMO

The alpine meadow in the source region of the Yangtze and Yellow River is suffering serious deterioration. Though great efforts have been put into, the restoration for the degraded grassland is far from being effective, mainly due to poor understanding of the degradation mechanism of alpine meadow in this region. In order to clarify the formation mechanism of degradation grassland and provide the new ideas for restoration, degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River were taken as target systems to analyze the soil particle size distribution, the fractal dimension of the soil particle size, and the relationship between soil erosion modulus and fractal dimension. The results showed that, with increasing grassland degradation, the percentage contents of clay increased while the percentage contents of silt sand and very fine sand showed a decreasing trend. The fractal dimension presented a positive correlation with clay among the degradation sequences while negative correlations were found with very fine sand and silt sand. The curvilinear regression of fractal dimension and erosion modulus fitted a quadratic function. Judged by the function, fractal dimension 2.81 was the threshold value of soil erosion. The threshold value has an indicative meaning on predicting the breakout of grazing-induced erosion and on restoration of the degraded grassland. Taking fractal dimension of 2.81 as the restoration indicator, adoption of corresponding measures to make fractal dimension less than 2.81, would an effective way to restore the degradation grassland.


Assuntos
Pradaria , Tamanho da Partícula , Solo , Silicatos de Alumínio , Fenômenos Químicos , China , Argila , Fractais , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA