Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740701

RESUMO

Pulmonary arterial hypertension (PAH) is a pathophysiological syndrome that is extremely difficult to manage, and there is currently no effective treatment. We want to elucidate the therapeutic effect of ethyl pyruvate (EP) on PAH and its possible mechanism. Pulmonary artery endothelial cells (PAECs) were cultured in conventional low-oxygen environments, and cellular proliferation was monitored after treatment with EP. Expression of p-PI3K/Akt, LC3-II, and Beclin-1 was detected by Western blot. After hyperkinetic PAH rabbits' models were treated with EP, hemodynamic data were collected. Right ventricular hypertrophy and pulmonary vascular remodeling were evaluated. Expression of p-PI3K/Akt, LC3-II, and Beclin-1 protein was also detected after using autophagy inhibitor and agonists. We found that EP could inhibit PAECs proliferation. After EP treatment, expression of p-PI3K/Akt was upregulated in vitro and in vivo. LC3-II and Beclin-1 were inhibited and their expression was lower after autophagy inhibitor was given, while after administration of autophagy agonists, their expression was higher than that in the EP alone group. Besides, EP attenuated PAH, and right ventricular hypertrophy and pulmonary vascular remodeling were also reversed. EP can reduce PAH and reverse vascular remodeling which is associated with inhibition of autophagy in PAECs based on PI3K-Akt signaling pathway. The results of this study can provide surgical opportunities for patients with severe PAH caused by congenital heart disease in clinical cardiovascular surgery.

2.
Heart Lung Circ ; 33(2): 251-259, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307791

RESUMO

AIM: Hyperkinetic pulmonary arterial hypertension (PAH) is a complication of congenital heart disease. Gene therapy is a new experimental treatment for PAH, and ultrasound-mediated gene-carrying microbubble targeted delivery is a promising development for gene transfer. METHODS: This study successfully established a hyperkinetic PAH rabbit model by a common carotid artery and jugular vein shunt using the cuff style method. Liposome microbubbles carrying the hepatocyte growth factor (HGF) gene were successfully constructed. An in vitro experiment evaluated the appropriate intensity of ultrasonic radiation by Western blots and 3H-TdR incorporation assays. In an in vivo experiment, after transfection of ultrasound-mediated HGF gene microbubbles, catheterisation was applied to collect haemodynamic data. Hypertrophy of the right ventricle was evaluated by measuring the right ventricle hypertrophy index. Western blot and immunohistochemistry analyses were used to detect the expression of human (h)HGF and angiogenic effects, respectively. RESULTS: The most appropriate ultrasonic radiation intensity was 1.0 W/cm2 for 5 minutes. Two weeks after transfection, both systolic pulmonary arterial pressure and mean pulmonary arterial pressure were attenuated. Hypertrophy of the right ventricle was reversed. hHGF was transplanted into the rabbits, resulting in a high expression of hHGF protein and an increase in the number of small pulmonary arteries. Ultrasound-mediated HGF gene microbubble therapy was more effective at attenuating PAH and increasing the density of small pulmonary arteries than single HGF plasmid transfection. CONCLUSIONS: Ultrasound-mediated HGF gene microbubbles significantly improved the target of gene therapy in a rabbit PAH model and enhanced the tropism and transfection rates. Thus, the technique can effectively promote small pulmonary angiogenesis and play a role in the treatment of PAH without adverse reactions.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Coelhos , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/diagnóstico , Microbolhas , Fator de Crescimento de Hepatócito/genética , Hipertensão Pulmonar Primária Familiar , Hipertrofia
3.
Cell Death Discov ; 10(1): 105, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424042

RESUMO

The role of Basic leucine zipper and W2 domains 2 (BZW2) in the advancement of different types of tumors is noteworthy, but its involvement and molecular mechanisms in lung adenocarcinoma (LUAD) remain uncertain. Through this investigation, it was found that the upregulation of BZW2 was observed in LUAD tissues, which was associated with an unfavorable prognosis for individuals diagnosed with LUAD, as indicated by data from Gene Expression Omnibus and The Cancer Genome Atlas databases. Based on the clinicopathologic characteristics of LUAD patients from the tissue microarray, both univariate and multivariate analyses indicated that BZW2 functioned as an independent prognostic factor for LUAD. In terms of mechanism, BZW2 interacted with glycogen synthase kinase-3 beta (GSK3ß) and enhanced the ubiquitination-mediated degradation of GSK3ß through slowing down of the dissociation of the ubiquitin ligase complex, which consists of GSK3ß and TNF receptor-associated factor 6. Moreover, BZW2 stimulated Wnt/ß-catenin signaling pathway through GSK3ß, thereby facilitating the advancement of LUAD. In conclusion, BZW2 was a significant promoter of LUAD. The research we conducted identified a promising diagnostic and therapeutic target for LUAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA