Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant J ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972041

RESUMO

Diurnal flower-opening time (DFOT), the time of spikelet opening during the day, is an important trait for hybrid rice (Oryza sativa L.) seed production. Hybrids between indica and japonica rice varieties have strong heterosis, but the parental lines usually have different, nonoverlapping DFOTs. This reduces the success of hybrid seed production in crosses between indica and japonica subspecies, thus hindering the utilization of indica and japonica inter-subspecies heterosis. However, little is known about the molecular mechanisms regulating DFOT in rice. Here, we obtained japonica rice lines with a DFOT 1.5 h earlier than the wild type by overexpressing OsMYC2, a gene encoding a key transcription factor in the jasmonate (JA) signaling pathway. OsMYC2 is activated by JA signaling and directly regulates the transcription of genes related to JA biosynthesis and cell wall metabolism. Overexpressing OsMYC2 led to significantly increased JA contents and decreased cellulose and hemicellulose contents in lodicule cells, as well as the softening of lodicule cell walls. This may facilitate the swelling of lodicules, resulting in early diurnal flower-opening. These results suggest that the OsMYC2-JA feedback loop regulates DFOT in rice via cell wall remodeling. These findings shed light on the understanding of regulatory mechanism of the DFOT of plants, which should promote the development of indica and japonica varieties suitable for hybrid rice breeding.

2.
Plant Biotechnol J ; 22(8): 2267-2281, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38526838

RESUMO

Inter-subspecific indica-japonica hybrid rice (Oryza sativa) has the potential for increased yields over traditional indica intra-subspecies hybrid rice, but limited yield of F1 hybrid seed production (FHSP) hinders the development of indica-japonica hybrid rice breeding. Diurnal flower-opening time (DFOT) divergence between indica and japonica rice has been a major contributing factor to this issue, but few DFOT genes have been cloned. Here, we found that manipulating the expression of jasmonate (JA) pathway genes can effectively modulate DFOT to improve the yield of FHSP in rice. Treating japonica cultivar Zhonghua 11 (ZH11) with methyl jasmonate (MeJA) substantially advanced DFOT. Furthermore, overexpressing the JA biosynthesis gene OPDA REDUCTASE 7 (OsOPR7) and knocking out the JA inactivation gene CHILLING TOLERANCE 1 (OsHAN1) in ZH11 advanced DFOT by 1- and 2-h respectively; and knockout of the JA signal suppressor genes JASMONATE ZIM-DOMAIN PROTEIN 7 (OsJAZ7) and OsJAZ9 resulted in 50-min and 1.5-h earlier DFOT respectively. The yields of FHSP using japonica male-sterile lines GAZS with manipulated JA pathway genes were significantly higher than that of GAZS wildtype. Transcriptome analysis, cytological observations, measurements of elastic modulus and determination of cell wall components indicated that the JA pathway could affect the loosening of the lodicule cell walls by regulating their composition through controlling sugar metabolism, which in turn influences DFOT. This research has vital implications for breeding japonica rice cultivars with early DFOT to facilitate indica-japonica hybrid rice breeding.


Assuntos
Ciclopentanos , Flores , Oryza , Oxilipinas , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Flores/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Acetatos/farmacologia , Acetatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ritmo Circadiano/genética
3.
Plant Cell Environ ; 47(6): 1997-2010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379450

RESUMO

Gummy stem blight (GSB), a widespread disease causing great loss to cucurbit production, has become a major threat to melon cultivation. However, the melon-GSB interaction remains largely unknown. Here, full-length transcriptome and widely targeted metabolome were used to investigate the defence responses of resistant (PI511089) and susceptible (Payzawat) melon accessions to GSB pathogen infection at 24 h. The biosynthesis of secondary metabolites and MAPK signalling pathway were specifically enriched for differentially expressed genes in PI511890, while carbohydrate metabolism and amino acid metabolism were specifically enriched in Payzawat. More than 1000 novel genes were identified and MAPK signalling pathway was specifically enriched for them in PI511890. There were 11 793 alternative splicing events involving in the defence response to GSB. Totally, 910 metabolites were identified in Payzawat and PI511890, and flavonoids were the dominant metabolites. Integrated full-length transcriptome and metabolome analysis showed eriodictyol and oxalic acid were the potential marker metabolites for GSB resistance in melon. Moreover, posttranscription regulation was widely involved in the defence response of melon to GSB pathogen infection. These results not only improve our understanding on the interaction between melon and GSB, but also facilitate the genetic improvement of melon with GSB resistance.


Assuntos
Cucurbitaceae , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Metaboloma , Doenças das Plantas , Transcriptoma , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Cucurbitaceae/microbiologia , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Perfilação da Expressão Gênica
4.
Heliyon ; 10(7): e27993, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560108

RESUMO

Objective: To establish a Bama minipigs model with Non-Alcoholic Fatty Liver (NAFL) induced by a high-fat diet and investigate the application of attenuation coefficient (ATT) and ultrasound-derived fat fraction (UDFF) in the diagnosis of NAFL. Methods: Six-month-old male Bama minipigs were randomly divided into normal control and high-fat groups (n = 3 pigs per group), and fed with a control diet and high-fat diet for 32 weeks. Weight and body length were measured every four weeks, followed by quantitative ultrasound imaging (ATT and UDFF), blood biochemical markers, and liver biopsies on the same day. Using the Non-Alcoholic Fatty Liver Disease (NAFLD) Activity Score (NAS) as a reference, we analyzed the correlation between ATT, UDFF, and their score results. Results: Compared with the normal control group, the body weight, body mass index (BMI), and serum levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in the High-fat group were significantly different at Week 12 (P < 0.05). Spearman correlation analysis showed that the ATT value was significantly correlated with NAS score (r = 0.76, P < 0.001), and the UDFF value was significantly correlated with NAS score (r = 0.80, P < 0.001). The optimal cut-off value of ATT and UDFF were 0.59 dB/cm/MHz and 5.5%, respectively. These values are optimal for diagnosis of NAFL in Bama minipig model. Conclusion: ATT and UDFF have a high correlation with steatosis, and can be used as a non-invasive method for early screening of hepatic steatosis, which can dynamically monitor the change of disease course.

5.
Ecol Evol ; 14(4): e11279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633519

RESUMO

Wolbachia, one of the most ubiquitous heritable symbionts in lepidopteran insects, can cause mitochondrial introgression in related host species. We recently found mito-nuclear discordance in the Lepidopteran tribe Tagiadini Mabille 1878 from which Wolbachia has not been reported. In this study, we found that 13 of the 46 species of Tagiadini species tested were positive for Wolbachia. Overall, 14% (15/110) of Tagiadini specimens were infected with Wolbachia and nine new STs were found from 15 isolates. A co-phylogenetic comparison, divergence time estimation and Wolbachia recombination analysis revealed that mito-nuclear discordance in Tagiadini species is not mediated by Wolbachia, but Wolbachia acquisition in Tagiadini appears to have occurred mainly through horizontal transmission rather than codivergence.

6.
Diagn Microbiol Infect Dis ; 110(1): 116392, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875895

RESUMO

OBJECTIVE: To explore the diagnostic value of third-generation nanopore sequencing technology in patients with diabetes mellitus suspected of pulmonary tuberculosis. METHODS: Samples, including sputum and bronchoalveolar lavage fluid(BALF), were collected from patients with diabetes mellitus suspected of pulmonary tuberculosis who were admitted from October 2021 to August 2023. Nanopore sequencing, acid-fast bacilli (AFB) smear, mycobacterial solid culture, Xpert MTB/RIF, and DNA detection were performed, and their diagnostic efficacy was compared. RESULTS: Third-generation nanopore sequencing technology exhibited high accuracy in diagnosing pulmonary tuberculosis in patients with diabetes mellitus. Compared to traditional methods, nanopore sequencing showed significantly improved sensitivity (76.80 %), negative predictive value (30.40 %), coincidence (77.92 %), and diagnostic accuracy (AUC = 0.822). Combined detection with Xpert achieved the highest diagnostic performance, with increased sensitivity (81.20 %), positive predictive value (98.20 %), negative predictive value (35.00 %), coincidence (81.82 %), and AUC (0.843). Although acid-fast staining had limitations, its combination with nanopore sequencing improved screening effectiveness. CONCLUSION: Compared to established diagnostic modalities such as acid-fast staining, mycobacterial solid culture, Xpert MTB/RIF, and DNA detection, third-generation nanopore sequencing technology demonstrates a significant improvement in sensitivity for detecting suspected pulmonary tuberculosis in diabetic patients. Notably, the combined application of nanopore sequencing with Xpert testing offers a further enhancement in diagnostic accuracy.


Assuntos
Diabetes Mellitus , Mycobacterium tuberculosis , Sequenciamento por Nanoporos , Sensibilidade e Especificidade , Escarro , Tuberculose Pulmonar , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Sequenciamento por Nanoporos/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Escarro/microbiologia , Adulto , Líquido da Lavagem Broncoalveolar/microbiologia , Idoso , DNA Bacteriano/genética , Técnicas de Diagnóstico Molecular/métodos
7.
Discov Oncol ; 14(1): 233, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110764

RESUMO

BACKGROUND: Celastrol has been revealed to exhibit anticancer pharmacological activity, however, the molecular mechanisms of celastrol involved in pancreatic cancer remain to be further elucidated. The present study was to illustrate whether celastrol suppresses pancreatic cancer through modulating RNA m6A modification. METHODS: Effect of celastrol treatment on the malignant phenotypes of pancreatic cancer cells was evaluated by CCK-8 assay, EdU assay, colony formation assay, flow cytometry analysis and subcutaneous xenograft experiments. RNA sequencing (RNA-seq) analysis was carried out to analyze the genes differentially expressed in celastrol-treated pancreatic cancer cells. RT-qPCR, Western blotting and immunohistochemistry were employed to evaluate the expression of the indicated genes. RNA dot blot and quantification of total RNA m6A modification assays, MeRIP-qPCR assay, RIP-qPCR assay, RNA stability and protein stability assays were applied to evaluate the regulatory mechanism of celastrol treatment in pancreatic cancer cells. RESULTS: We demonstrated that celastrol suppressed cell proliferation and induced cell cycle arrest and apoptosis of pancreatic cancer cells in vitro, and decreased tumor growth in vivo. Specifically, Bcl-2, Claspin, METTL3 and YTHDF3 were identified as the potential targets of celastrol treatment in pancreatic cancer cells. Moreover, our results indicated that celastrol treatment downregulated METTL3 and decreased m6A levels of Claspin and Bcl-2 mRNA, leading to the degradation of Claspin and Bcl-2 mRNA in pancreatic cancer cells. Furthermore, we revealed that celastrol treatment downregulated Claspin and Bcl-2, at least in part, in an m6A-YTHDF3-mediated manner in pancreatic cancer cells. CONCLUSION: Our study highlighted a novel mechanism underlying celastrol-induced cellular proliferation inhibition and apoptosis in pancreatic cancer cells via m6A-YTHDF3-mediated downregulation of Claspin and Bcl-2.

8.
Sleep Biol Rhythms ; 20(4): 561-568, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38468624

RESUMO

Obstructive sleep apnea hypoventilation syndrome (OSAHS) is a common sleep breathing disorder closely associated with cardiovascular disease. However, the respiratory sleep and related cardiovascular parameters on the apnea and hypopnea index (AHI) and life quality of primary snoring are unclear. We launched a cohort study focused on the association between respiratory sleep and cardiovascular-related parameters and apnea and hypopnea index, incorporating data from 218 patients with primary snoring in our medical center between Jun 1, 2015, and Apr 1, 2016. Thirty patients from Sichuan Cancer Hospital were used for validation. Patients with longer apnea time were more likely to progress to higher AHI (> 30) than controls (OR = 5.66, 95% CI = [2.79, 11.97], p < 0.001). Similarly, if patients have a higher value of diastolic blood pressure, they will also have a higher AHI (> 30) (HR [95% CI] = 3.42 [1.14, 13.65], p = 0.043). According to multivariate analysis, longest apnea time, the mean percentage of SaO2, and neckline length were independent risk factors of overall survival. A predictive model developed based on these factors above yielded a favorable agreement (C-index = 0.872) on the calibration curve. Thirty patients conducted external validation from Sichuan Cancer Hospital, displaying an AUC of 0.833 (0.782-0.884). Increased diastolic blood pressure and apnea time affect AHI level. An AHI prediction model based on these factors above can help clinicians predict the risk of high AHI events.

9.
Clinics ; 77: 100055, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1384607

RESUMO

Abstract Objectives Long non-coding RNAs (LncRNAs) act as an indispensable role in the Preeclampsia (PE)-related trophoblast function, while its relationship with Small Nucleolar RNA Host Gene 22 (SNHG22) remains unknown. Hence, this study aimed to investigate the roles of lncRNA SNHG22 in the Preeclampsia (PE)-related trophoblasts function and the underlying mechanism. Methods Normal placentas and placentas from PE patients were collected to detect the expression of lncRNA SNHG22. Then, trophoblasts HTR-8/Svneo and JEG-3 were purchased, cultured, and treated to investigate the roles of lncRNA SNHG22 on cell migration and invasion as well as its underlying regulatory mechanism. Results The SNHG22 was downregulated in PE patients, and it was found that SNHG22 overexpression could drive migration and invasion of trophoblasts, while SNHG22 depletion exerted a suppressive effect. Mechanistically, SNHG22 was validated to regulate microRNA-128-3p (miR-128-3p), and Protocadherin 11 X-Linked (PCDH11X) was identified as the target gene of miR-128-3p. Furthermore, it was found that SNHG22 acted as a promoter in the migration and invasion of trophoblast cells in a miR-128-3p/PCDH11X dependent manner, and SNHG22 silencing weakened the activation of PCDH11X-mediated PI3K/Akt signaling pathways through inhibiting miR-128-3p, thereby preventing migration and invasion of trophoblasts. Conclusion SNHG22 acted as a driver in the migration and invasion of trophoblasts and may be considered a candidate for the amelioration of PE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA