Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39065967

RESUMO

Synthetic aperture radar (SAR) image registration is an important process in many applications, such as image stitching and remote sensing surveillance. The registration accuracy is commonly affected by the presence of speckle noise in SAR images. When speckle noise is intense, the number of image features acquired by single-feature-based methods is insufficient. An SAR image registration method that combines nonlinear diffusion filtering, Hessian features and edge points is proposed in this paper to reduce speckle noise and obtain more image features. The proposed method uses the infinite symmetric exponential filter (ISEF) for image pre-processing and nonlinear diffusion filtering for scale-space construction. These measures can remove speckle noise from SAR images while preserving image edges. Hessian features and edge points are also employed as image features to optimize the utilization of feature information. Experiments with different noise levels, geometric transformations and image scenes demonstrate that the proposed method effectively improves the accuracy of SAR image registration compared with the SIFT-OCT, SAR-SIFT, Harris-SIFT, NF-Hessian and KAZE-SAR algorithms.

2.
Sensors (Basel) ; 19(3)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691042

RESUMO

Wide angle synthetic aperture radar (WASAR) receives data from a large angle, which causes the problem of aspect dependent scattering. L 1 regularization is a common compressed sensing (CS) model. The L 1 regularization based WASAR imaging method divides the whole aperture into subapertures and reconstructs the subaperture images individually. However, the aspect dependent scattering recovery of it is not accurate. The subaperture images of WASAR can be regarded as the SAR video. The support set among the different frames of SAR video are highly overlapped. Least squares on compressed sensing residuals (LS-CS-Residuals) can reconstruct the time sequences of sparse signals which change slowly with time. This is to replace CS on the observation by CS on the least squares (LS) residual computed using the prior estimate of the support. In this paper, we introduce LS-CS-Residual into WASAR imaging. In the iteration of LS-CS-Residual, the azimuth-range decoupled operators are used to avoid the huge memory cost. Real data processing results show that LS-CS-Residual can estimate the aspect dependent scatterings of the targets more accurately than CS based methods.

3.
Sensors (Basel) ; 19(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650524

RESUMO

Sparse signal processing has already been introduced to synthetic aperture radar (SAR), which shows potential in improving imaging performance based on raw data or a complex image. In this paper, the relationship between a raw data-based sparse SAR imaging method (RD-SIM) and a complex image-based sparse SAR imaging method (CI-SIM) is compared and analyzed in detail, which is important to select appropriate algorithms in different cases. It is found that they are equivalent when the raw data is fully sampled. Both of them can effectively suppress noise and sidelobes, and hence improve the image performance compared with a matched filtering (MF) method. In addition, the target-to-background ratio (TBR) or azimuth ambiguity-to-signal ratio (AASR) performance indicators of RD-SIM are superior to those of CI-SIM in down-sampling data-based imaging, nonuniform displace phase center sampling, and sparse SAR imaging model-based azimuth ambiguity suppression.

4.
Comput Methods Programs Biomed ; 242: 107784, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37660577

RESUMO

BACKGROUND AND OBJECTIVE: Heart disease seriously threatens human life and health. It has the character of abruptness and is necessary to accurately monitor and intelligently diagnose electrocardiograph signals in real-time. As part of the automation of heart monitoring, the electrocardiogram (ECG) intelligent diagnosis method based on deep learning not only meets the needs of real-time and accurate but also can abandon relevant professional knowledge, which makes it possible to be promoted in the general population. METHODS: This paper presents an intelligent diagnosis method based on a ResNet. Firstly, ECG signals from MIT-BIH Database are converted into 2-dim matrices by Markov Transition Field. Secondly, the matrices are used as the input of a ResNet. Then, the ResNet is able to extract high abstract features of various diseases and realize intelligent identification of five heartbeat types, including Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch Block Beat, Premature Ventricular Contraction Beat, and Atrial Premature Contraction Beat. Eventually, the proposed model is used to identify Normal Beat and Atrial Fibrillation(AF) based on the PAF Prediction Challenge Database(the PAFPC Database) to verify its generalization ability. RESULTS: The experiment result shows that the intelligent diagnosis method can reach a high F1-score of 97.7% and a high accuracy upon to 99.2% on MIT-BIH Database, which are higher than the models proposed by other researchers. Its mean sensitivity and mean specificity are 97.42% and 99.54%, respectively. Moreover, the accuracy of the generalization ability verification experiment is 94.57% on the PAFPC Database, which is also higher than the results of other studies. CONCLUSION: The research results show that the method proposed in this paper still achieves higher accuracy and higher F1-score than other methods without any data preprocessing. This method has better classification performance than traditional machine learning methods and other deep learning methods. That is, the method based on Markov Transition Field and a ResNet has good application prospects. At the same time, it has been verified that the model proposed in this paper also has excellent generalization ability.


Assuntos
Fibrilação Atrial , Cardiopatias , Complexos Ventriculares Prematuros , Humanos , Algoritmos , Processamento de Sinais Assistido por Computador , Eletrocardiografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA