Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Pathog ; 20(7): e1012382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991025

RESUMO

Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.

2.
Mol Ecol ; 29(7): 1284-1299, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32159878

RESUMO

Coloration has been associated with multiple biologically relevant traits that drive adaptation and diversification in many taxa. However, despite the great diversity of colour patterns present in amphibians the underlying molecular basis is largely unknown. Here, we use insight from a highly colour-variable lineage of the European fire salamander (Salamandra salamandra bernardezi) to identify functional associations with striking variation in colour morph and pattern. The three focal colour morphs-ancestral black-yellow striped, fully yellow and fully brown-differed in pattern, visible coloration and cellular composition. From population genomic analyses of up to 4,702 loci, we found no correlations of neutral population genetic structure with colour morph. However, we identified 21 loci with genotype-phenotype associations, several of which relate to known colour genes. Furthermore, we inferred response to selection at up to 142 loci between the colour morphs, again including several that relate to coloration genes. By transcriptomic analysis across all different combinations, we found 196 differentially expressed genes between yellow, brown and black skin, 63 of which are candidate genes involved in animal coloration. The concordance across different statistical approaches and 'omic data sets provide several lines of evidence for loci linked to functional differences between colour morphs, including TYR, CAMK1 and PMEL. We found little association between colour morph and the metabolomic profile of its toxic compounds from the skin secretions. Our research suggests that current ecological and evolutionary hypotheses for the origins and maintenance of these striking colour morphs may need to be revisited.


Assuntos
Evolução Biológica , Genética Populacional , Pigmentação da Pele/genética , Urodelos/genética , Animais , Cor , Perfilação da Expressão Gênica , Estudos de Associação Genética , Pele , Espanha
3.
PLoS Pathog ; 11(3): e1004689, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25775470

RESUMO

Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.


Assuntos
Glucose/metabolismo , Redes e Vias Metabólicas/fisiologia , Trypanosoma brucei brucei/metabolismo , Animais , Células Cultivadas , Glicerol/metabolismo , Metabolômica/métodos , Oxirredução , Via de Pentose Fosfato/fisiologia , Ácido Succínico/metabolismo
4.
Microbiol Spectr ; 10(4): e0110122, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35867395

RESUMO

The chloroquine resistance transporter, PfCRT, is an essential factor during intraerythrocytic development of the human malaria parasite Plasmodium falciparum. PfCRT resides at the digestive vacuole of the parasite, where hemoglobin taken up by the parasite from its host cell is degraded. PfCRT can acquire several mutations that render PfCRT a drug transporting system expelling compounds targeting hemoglobin degradation from the digestive vacuole. The non-drug related function of PfCRT is less clear, although a recent study has suggested a role in oligopeptide transport based on studies conducted in a heterologous expression system. The uncertainty about the natural function of PfCRT is partly due to a lack of a null mutant and a dearth of functional assays in the parasite. Here, we report on the generation of a conditional PfCRT knock-down mutant in P. falciparum. The mutant accumulated oligopeptides 2 to at least 8 residues in length under knock-down conditions, as shown by comparative global metabolomics. The accumulated oligopeptides were structurally diverse, had an isoelectric point between 4.0 and 5.4 and were electrically neutral or carried a single charge at the digestive vacuolar pH of 5.2. Fluorescently labeled dipeptides and live cell imaging identified the digestive vacuole as the compartment where oligopeptides accumulated. Our findings suggest a function of PfCRT in oligopeptide transport across the digestive vacuolar membrane in P. falciparum and associated with it a role in nutrient acquisition and the maintenance of the colloid osmotic balance. IMPORTANCE The chloroquine resistance transporter, PfCRT, is important for the survival of the human malaria parasite Plasmodium falciparum. It increases the tolerance to many antimalarial drugs, and it is essential for the development of the parasite within red blood cells. While we understand the role of PfCRT in drug resistance in ever increasing detail, the non-drug resistance functions are still debated. Identifying the natural substrate of PfCRT has been hampered by a paucity of functional assays to test putative substrates in the parasite system and the absence of a parasite mutant deficient for the PfCRT encoding gene. By generating a conditional PfCRT knock-down mutant, together with comparative metabolomics and uptake studies using fluorescently labeled oligopeptides, we could show that PfCRT is an oligopeptide transporter. The oligopeptides were structurally diverse and were electrically neutral or carried a single charge. Our data support a function of PfCRT in oligopeptide transport.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/farmacologia , Cloroquina/metabolismo , Cloroquina/farmacologia , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
5.
PLoS Negl Trop Dis ; 16(9): e0010779, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36170238

RESUMO

Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.


Assuntos
Antiprotozoários , Leishmania mexicana , Camundongos , Animais , Anfotericina B/farmacologia , Leishmania mexicana/metabolismo , Nistatina , Soroalbumina Bovina/metabolismo , Esteróis , Estresse Oxidativo , Polienos , Transferases/metabolismo , Glucose , Ácidos Graxos Dessaturases/metabolismo , Antiprotozoários/farmacologia
6.
Rapid Commun Mass Spectrom ; 25(7): 969-72, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21416534

RESUMO

Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions.


Assuntos
Análise de Fourier , Histocitoquímica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Química Encefálica , Rim/química , Metabolômica , Camundongos , Fosfolipídeos/análise , Compostos de Estanho
7.
PLoS Negl Trop Dis ; 13(2): e0007052, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716073

RESUMO

Amphotericin B is an increasingly important tool in efforts to reduce the global disease burden posed by Leishmania parasites. With few other chemotherapeutic options available for the treatment of leishmaniasis, the potential for emergent resistance to this drug is a considerable threat. Here we characterised four novel amphotericin B-resistant Leishmania mexicana lines. All lines exhibited altered sterol biosynthesis, and hypersensitivity to pentamidine. Whole genome sequencing demonstrated resistance-associated mutation of the sterol biosynthesis gene sterol C5-desaturase in one line. However, in three out of four lines, RNA-seq revealed loss of expression of sterol C24-methyltransferase (SMT) responsible for drug resistance and altered sterol biosynthesis. Additional loss of the miltefosine transporter was associated with one of those lines. SMT is encoded by two tandem gene copies, which we found to have very different expression levels. In all cases, reduced overall expression was associated with loss of the 3' untranslated region of the dominant gene copy, resulting from structural variations at this locus. Local regions of sequence homology, between the gene copies themselves, and also due to the presence of SIDER1 retrotransposon elements that promote multi-gene amplification, correlate to these structural variations. Moreover, in at least one case loss of SMT expression was not associated with loss of virulence in primary macrophages or in vivo. Whilst such repeat sequence-mediated instability is known in Leishmania genomes, its presence associated with resistance to a major antileishmanial drug, with no evidence of associated fitness costs, is a significant concern.


Assuntos
Anfotericina B/farmacologia , Instabilidade Genômica , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/genética , Metiltransferases/genética , Animais , Antiprotozoários/farmacologia , Resistência a Medicamentos , Regulação Enzimológica da Expressão Gênica , Humanos , Metiltransferases/metabolismo
8.
Chem Commun (Camb) ; (17): 1719-21, 2007 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-17457419

RESUMO

The high mass accuracy of FT-ICR MS combined with (15)N-labelling shows that mono- and di- platinated products from the reaction of erythrocyte superoxide dismutase with the anticancer drug cisplatin in solution retain their ammine ligands, in contrast to a recent X-ray crystallographic study.


Assuntos
Amônia/química , Cisplatino/química , Íons/química , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Ligantes , Espectrometria de Massas , Modelos Moleculares , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
9.
PLoS Negl Trop Dis ; 11(6): e0005649, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28622334

RESUMO

Amphotericin B has emerged as the therapy of choice for use against the leishmaniases. Administration of the drug in its liposomal formulation as a single injection is being promoted in a campaign to bring the leishmaniases under control. Understanding the risks and mechanisms of resistance is therefore of great importance. Here we select amphotericin B-resistant Leishmania mexicana parasites with relative ease. Metabolomic analysis demonstrated that ergosterol, the sterol known to bind the drug, is prevalent in wild-type cells, but diminished in the resistant line, where alternative sterols become prevalent. This indicates that the resistance phenotype is related to loss of drug binding. Comparing sequences of the parasites' genomes revealed a plethora of single nucleotide polymorphisms that distinguish wild-type and resistant cells, but only one of these was found to be homozygous and associated with a gene encoding an enzyme in the sterol biosynthetic pathway, sterol 14α-demethylase (CYP51). The mutation, N176I, is found outside of the enzyme's active site, consistent with the fact that the resistant line continues to produce the enzyme's product. Expression of wild-type sterol 14α-demethylase in the resistant cells caused reversion to drug sensitivity and a restoration of ergosterol synthesis, showing that the mutation is indeed responsible for resistance. The amphotericin B resistant parasites become hypersensitive to pentamidine and also agents that induce oxidative stress. This work reveals the power of combining polyomics approaches, to discover the mechanism underlying drug resistance as well as offering novel insights into the selection of resistance to amphotericin B itself.


Assuntos
Anfotericina B/farmacologia , Antiprotozoários/farmacologia , Resistência a Medicamentos , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/enzimologia , Mutação de Sentido Incorreto , Esterol 14-Desmetilase/genética , Ergosterol/análise , Teste de Complementação Genética , Genoma de Protozoário , Leishmania mexicana/química , Metabolômica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polimorfismo de Nucleotídeo Único , Esterol 14-Desmetilase/metabolismo
10.
Mol Biosyst ; 12(9): 2748-61, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27412694

RESUMO

Mastitis, inflammation of the mammary gland, is the most common and costly disease of dairy cattle in the western world. It is primarily caused by bacteria, with Streptococcus uberis as one of the most prevalent causative agents. To characterize the proteome during Streptococcus uberis mastitis, an experimentally induced model of intramammary infection was used. Milk whey samples obtained from 6 cows at 6 time points were processed using label-free relative quantitative proteomics. This proteomic analysis complements clinical, bacteriological and immunological studies as well as peptidomic and metabolomic analysis of the same challenge model. A total of 2552 non-redundant bovine peptides were identified, and from these, 570 bovine proteins were quantified. Hierarchical cluster analysis and principal component analysis showed clear clustering of results by stage of infection, with similarities between pre-infection and resolution stages (0 and 312 h post challenge), early infection stages (36 and 42 h post challenge) and late infection stages (57 and 81 h post challenge). Ingenuity pathway analysis identified upregulation of acute phase protein pathways over the course of infection, with dominance of different acute phase proteins at different time points based on differential expression analysis. Antimicrobial peptides, notably cathelicidins and peptidoglycan recognition protein, were upregulated at all time points post challenge and peaked at 57 h, which coincided with 10 000-fold decrease in average bacterial counts. The integration of clinical, bacteriological, immunological and quantitative proteomics and other-omic data provides a more detailed systems level view of the host response to mastitis than has been achieved previously.


Assuntos
Mastite Bovina/metabolismo , Proteínas do Leite/metabolismo , Leite/metabolismo , Proteômica , Infecções Estreptocócicas/veterinária , Streptococcus , Animais , Biomarcadores , Bovinos , Cromatografia Líquida , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Mastite Bovina/genética , Mastite Bovina/microbiologia , Proteínas do Leite/química , Proteínas do Leite/genética , Peptídeos/metabolismo , Análise de Componente Principal , Proteômica/métodos , Transdução de Sinais , Espectrometria de Massas em Tandem
11.
Dalton Trans ; 42(9): 3188-95, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23076358

RESUMO

The organometallic anticancer complex [(η(6)-bip)Ru(en)Cl](+) (1; bip = biphenyl, en = ethylenediamine) selectively binds to N7 of guanine bases of oligonucleotides and native DNA. However, under physiologically relevant conditions (micromolar Ru concentrations, pH 7, 22 mM NaCl, 310 K), the tripeptide glutathione (γ-L-Glu-L-Cys-Gly; GSH) is kinetically competitive with guanine (as guanosine 3',5'-cyclic monophosphate, cGMP) for coordination with complex 1, and gives rise to a ruthenium thiolato adduct. This thiolato adduct can subsequently undergo oxidation to a sulfenate intermediate, providing a facile route for the formation of a final cGMP adduct via the displacement of S-bound glutathione by G N7 (F. Y. Wang, J. J. Xu, A. Habtemariam, J. Bella and P. J. Sadler, J. Am. Chem. Soc., 2005, 127, 17734). In this work, the competition between GSH and the single-stranded 14-mer oligonucleotide 5'-TATGTACCATGTAT-3' (I) and duplex III (III = I + II, II = 5'-ATACATGGTACATA) for complex 1 and its analogue [(η(6)-tha)Ru(en)Cl](+) (2, tha = tetrahydroanthracene) under physiologically relevant conditions was investigated using conventional ESI-MS and high resolution ESI-FTICR-MS coupled to conventional HPLC and nanoscale HPLC, respectively. The results indicate that whether there was high excess of GSH or not in the reaction mixtures, the reaction of complex 1 or 2 with single-stranded oligonucleotide I always gave rise to mono-ruthenated oligonucleotide, and the reaction of complex 1 or 2 with duplex III gave rise to the mono-ruthenated duplex oligonucleotide. Furthermore, the ruthenation of duplex III by complex 1 showed no significant discrimination between the complementary strands I and II, but complex 2 appeared to bind preferentially to strand II compared to strand I as revealed by the high resolution FTICR-MS analysis. GSH is highly abundant in cells at millimolar concentrations and is well known to be involved in the deactivation of the clinical drug cisplatin and in platinum resistance. Our findings reveal a potentially contrasting role for GSH in the mechanism of action of these ruthenium anticancer complexes that may contribute to the lack of cross-resistance with platinum drugs.


Assuntos
Ligação Competitiva , DNA/metabolismo , Glutationa/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Rutênio/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Sequência de Bases , DNA/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Oligodesoxirribonucleotídeos/genética
12.
J Am Soc Mass Spectrom ; 22(5): 888-97, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21472523

RESUMO

The tumor suppressor p53 is a redox-regulated transcription factor involved in cell cycle arrest, apoptosis and senescence in response to multiple forms of stress, as well as many other cellular processes such as DNA repair, glycolysis, autophagy, oxidative stress and differentiation. The discovery of cysteine-targeting compounds that cause re-activation of mutant p53 and the death of tumor cells in vivo has emphasized the functional importance of p53 thiols. Using a combination of top-down and middle-down FTICR mass spectrometry, we show that of the 10 Cys residues in the core domain of wild-type p53, Cys182 and Cys277 exhibit a remarkable preference for modification by the alkylating reagent N-ethylmaleimide. The assignment of Cys182 and Cys277 as the two reactive Cys residues was confirmed by site-directed mutagenesis. Further alkylation of p53 beyond Cys182 and Cys277 was found to trigger co-operative modification of the remaining seven Cys residues and protein unfolding. This study highlights the power of top-down FTICR mass spectrometry for analysis of the cysteine reactivity and redox chemistry in multiple cysteine-containing proteins.


Assuntos
Cisteína/química , Espectrometria de Massas/métodos , Proteína Supressora de Tumor p53/química , Alquilantes , Sequência de Aminoácidos , Cristalografia por Raios X , Cisteína/metabolismo , Etilmaleimida , Análise de Fourier , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Desdobramento de Proteína , Temperatura , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA