Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Hippocampus ; 27(11): 1125-1139, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28667703

RESUMO

Behavioral and neurophysiological evidence suggests that the slow (≤1 Hz) oscillation (SO) during sleep plays a role in consolidating hippocampal (HIPP)-dependent memories. The effects of the SO on HIPP activity have been studied in rodents and cats both during natural sleep and during anesthetic administration titrated to mimic sleep-like slow rhythms. In this study, we sought to document these effects in primates. First, HIPP field potentials were recorded during ketamine-dexmedetomidine sedation and during natural sleep in three rhesus macaques. Sedation produced regionally-specific slow and gamma (∼40 Hz) oscillations with strong coupling between the SO phase and gamma amplitude. These same features were seen in slow-wave sleep (SWS), but the coupling was weaker and the coupled gamma oscillation had a higher frequency (∼70 Hz) during SWS. Second, electrical stimuli were delivered to HIPP afferents in the parahippocampal gyrus (PHG) during sedation to assess the effects of sleep-like SO on excitability. Gamma bursts after the peak of SO cycles corresponded to periods of increased gain of monosynaptic connections between the PHG and HIPP. However, the two PHG-HIPP connectivity gains during sedation were both substantially lower than when the animal was awake. We conclude that the SO is correlated with rhythmic excitation and inhibition of the PHG-HIPP network, modulating connectivity and gamma generators intrinsic to this network. Ketamine-dexmedetomidine sedation produces a similar effect, but with a decreased contribution of the PHG to HIPP activity and gamma generation.


Assuntos
Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Hipnóticos e Sedativos/farmacologia , Sono/fisiologia , Animais , Dexmedetomidina/farmacologia , Estimulação Elétrica , Eletrodos Implantados , Ketamina/farmacologia , Macaca mulatta , Masculino , Giro Para-Hipocampal/efeitos dos fármacos , Giro Para-Hipocampal/fisiologia , Processamento de Sinais Assistido por Computador , Sono/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
2.
J Neurophysiol ; 115(5): 2255-64, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26912601

RESUMO

The dorsal column nuclei (DCN) of the brain stem contain secondary afferent neurons, which process ascending somatosensory information. Most of the known physiology of the DCN in primates has been acquired in acute experiments with anesthetized animals. Here, we developed a technique to implant a multielectrode array (MEA) chronically in the DCN of macaque monkeys to enable experiments with the animals awake. Two monkeys were implanted with brain-stem MEAs for 2-5 mo with no major adverse effects. Responses of the cuneate and gracile nuclei were quantified at the level of both field potentials and single units. Tactile receptive fields (RFs) were identified for 315 single units. A subset of these units had very regular spiking patterns with spike frequencies predominantly in the alpha band (8-14 Hz). The stability of the neuronal recordings was assessed with a novel analysis that identified units by their mean spike waveform and by the spike-triggered average of activity on all other electrodes in the array. Fifty-six identified neurons were observed over two or more sessions and in a few cases for as long as 1 mo. RFs of stable neurons were largely consistent across days. The results demonstrate that a chronic DCN implant in a macaque can be safe and effective, yielding high-quality unit recording for several months. The unprecedented access to these nuclei in awake primates should lead to a better understanding of their role in sensorimotor behavior.


Assuntos
Tronco Encefálico/fisiologia , Eletroencefalografia/métodos , Neurônios/fisiologia , Ritmo alfa , Animais , Tronco Encefálico/citologia , Eletrodos Implantados , Eletroencefalografia/instrumentação , Potenciais Somatossensoriais Evocados , Macaca mulatta , Masculino , Percepção do Tato , Vigília
3.
J Neurosci ; 32(30): 10273-85, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22836261

RESUMO

How supplementary eye field (SEF) contributes to visual search is unknown. Inputs from cortical and subcortical structures known to represent visual salience suggest that SEF may serve as an additional node in this network. This hypothesis was tested by recording action potentials and local field potentials (LFPs) in two monkeys performing an efficient pop-out visual search task. Target selection modulation, tuning width, and response magnitude of spikes and LFP in SEF were compared with those in frontal eye field. Surprisingly, only ∼2% of SEF neurons and ∼8% of SEF LFP sites selected the location of the search target. The absence of salience in SEF may be due to an absence of appropriate visual afferents, which suggests that these inputs are a necessary anatomical feature of areas representing salience. We also tested whether SEF contributes to overcoming the automatic tendency to respond to a primed color when the target identity switches during priming of pop-out. Very few SEF neurons or LFP sites modulated in association with performance deficits following target switches. However, a subset of SEF neurons and LFPs exhibited strong modulation following erroneous saccades to a distractor. Altogether, these results suggest that SEF plays a limited role in controlling ongoing visual search behavior, but may play a larger role in monitoring search performance.


Assuntos
Potenciais de Ação/fisiologia , Cognição/fisiologia , Movimentos Oculares/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Vias Visuais/fisiologia , Animais , Macaca mulatta , Macaca radiata , Masculino , Neurônios/fisiologia , Estimulação Luminosa , Percepção Visual/fisiologia
4.
J Neurosci ; 32(22): 7711-22, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22649249

RESUMO

Although areas of frontal cortex are thought to be critical for maintaining information in visuospatial working memory, the event-related potential (ERP) index of maintenance is found over posterior cortex in humans. In the present study, we reconcile these seemingly contradictory findings. Here, we show that macaque monkeys and humans exhibit the same posterior ERP signature of working memory maintenance that predicts the precision of the memory-based behavioral responses. In addition, we show that the specific pattern of rhythmic oscillations in the alpha band, recently demonstrated to underlie the human visual working memory ERP component, is also present in monkeys. Next, we concurrently recorded intracranial local field potentials from two prefrontal and another frontal cortical area to determine their contribution to the surface potential indexing maintenance. The local fields in the two prefrontal areas, but not the cortex immediately posterior, exhibited amplitude modulations, timing, and relationships to behavior indicating that they contribute to the generation of the surface ERP component measured from the distal posterior electrodes. Rhythmic neural activity in the theta and gamma bands during maintenance provided converging support for the engagement of the same brain regions. These findings demonstrate that nonhuman primates have homologous electrophysiological signatures of visuospatial working memory to those of humans and that a distributed neural network, including frontal areas, underlies the posterior ERP index of visuospatial working memory maintenance.


Assuntos
Mapeamento Encefálico , Potenciais Evocados Visuais/fisiologia , Macaca mulatta/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Análise de Variância , Animais , Eletroencefalografia , Movimentos Oculares , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Estimulação Luminosa , Tempo de Reação , Fatores de Tempo , Córtex Visual/anatomia & histologia , Adulto Jovem
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 4719-4722, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269325

RESUMO

The sense of touch and proprioception are critical to movement control. After spinal cord injury, these senses may be restored with direct, electrical microstimulation of the brain as part of a complete sensorimotor neuroprosthesis. The present study was designed to test, in part, the hypothesis that the cuneate nucleus (CN) of the brainstem is a suitable site to encode somatosensory information. Two rhesus macaques were implanted with microelectrode arrays providing chronic access to the CN. The monkeys were trained on an active touch oddity task to detect vibrotactile stimuli. When the vibrotactile stimuli were replaced with electrical stimuli delivered to the CN, initial detection probabilities were near chance. Detection performance improved over time, reaching a plateau after about 10 daily sessions. At plateau performance, the monkeys exhibited detection probabilities that were 68-80% higher than the chance probability. Finally, detection probability was quantified as a function of stimulus amplitude. The resulting psychometric curve showed a detection threshold of 45 µA for 100-Hz stimulus trains. These behavioral data are the first to show that artificial CN activation is sufficient for perception. The results are consistent with our hypothesis and motivate future tests of the CN as a somatosensory encoding site.


Assuntos
Bulbo/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Estimulação Elétrica , Macaca mulatta , Masculino , Microeletrodos , Probabilidade , Propriocepção , Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA