Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
FASEB J ; 34(3): 3983-3995, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31957074

RESUMO

BACKGROUND AND AIMS: Intestinal adaptation in short bowel syndrome (SBS) includes morphologic processes and functional mechanisms. This study investigated whether digestive enzyme expression in the duodenum and colon is upregulated in SBS patients. METHOD: Sucrase-isomaltase (SI), lactase-phlorizin hydrolase (LPH), and neutral Aminopeptidase N (ApN) were analyzed in duodenal and colonic biopsies from nine SBS patients in a late stage of adaptation as well as healthy and disease controls by immunoelectron microscopy (IEM), Western blots, and enzyme activities. Furthermore, proliferation rates and intestinal microbiota were analyzed in the mucosal specimen. RESULTS: We found significantly increased amounts of SI, LPH, and ApN in colonocytes in most SBS patients with large variation and strongest effect for SI and ApN. Digestive enzyme expression was only partially elevated in duodenal enterocytes due to a low proliferation level measured by Ki-67 staining. Microbiome analysis revealed high amounts of Lactobacillus resp. low amounts of Proteobacteria in SBS patients with preservation of colon and ileocecal valve. Colonic expression was associated with a better clinical course in single cases. CONCLUSION: In SBS patients disaccharidases and peptidases can be upregulated in the colon. Stimulation of this colonic intestinalization process by drugs, nutrients, and pre- or probiotics might offer better therapeutic approaches.


Assuntos
Intestino Grosso/enzimologia , Síndrome do Intestino Curto/enzimologia , Aminopeptidases/metabolismo , Western Blotting , Dissacaridases/metabolismo , Feminino , Humanos , Lactase-Florizina Hidrolase/metabolismo , Lactobacillus/fisiologia , Masculino , Microscopia Imunoeletrônica , Peptídeo Hidrolases/metabolismo , Proteobactérias/fisiologia , Complexo Sacarase-Isomaltase/metabolismo
2.
Clin Oral Investig ; 25(5): 2689-2703, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32949257

RESUMO

OBJECTIVES: We aimed at the high-resolution examination of the oral microbiome depending on oil pulling, compared it with saline pulling, and analyzed whether the method is capable of reducing the overall microbial burden of the oral cavity. MATERIALS AND METHODS: The study was a cohort study with three healthy subjects. Oil pulling samples, saline pulling samples, and saliva samples were microscoped and cultured under microaerophilic and anaerobic conditions; colony-forming units were counted; and cultivated bacteria were identified employing MALDI-TOF MS. The oral microbiomes (saliva) and the microbiota incorporated in oil and saline pulling samples were determined in toto by using 16S rDNA next-generation sequencing (NGS) and bioinformatics. RESULTS: Microscopy revealed that oral epithelial cells are ensheathed with distinct oil droplets during oil pulling. Oil pulling induced a higher production of saliva and the oil/saliva emulsion contained more bacteria than saline pulling samples. Oil pulling resulted in a significant and transient reduction of the overall microbial burden in comparison to saliva examined prior to and after pulling. Both oil and saline pulling samples mirrored the individual oral microbiomes in saliva. CONCLUSIONS: Within the limitations of this pilot study, it might be concluded that oil pulling is able to reduce the overall microbial burden of the oral cavity transiently and the microbiota in oil pulling samples are representative to the oral microbiome. CLINICAL RELEVANCE: Within the limitations of this pilot study, it might be concluded that oil pulling can be considered as an enlargement of standard oral hygiene techniques since it has the characteristic of an oral massage, enwrapping epithelial cells carrying bacteria in oil vesicles and reaching almost all unique habitats in oral cavity.


Assuntos
Microbiota , Estudos de Coortes , Voluntários Saudáveis , Humanos , Boca , Projetos Piloto , RNA Ribossômico 16S , Saliva , Óleo de Girassol
3.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445403

RESUMO

Natural smectites have demonstrated efficacy in the treatment of diarrhea. The present study evaluated the prophylactic effect of a diosmectite (FI5pp) on the clinical course, colon damage, expression of tight junction (TJ) proteins and the composition of the gut microbiota in dextran sulfate sodium (DSS) colitis. Diosmectite was administered daily to Balb/c mice from day 1 to 7 by oral gavage, followed by induction of acute DSS-colitis from day 8 to 14 ("Control", n = 6; "DSS", n = 10; "FI5pp + DSS", n = 11). Mice were sacrificed on day 21. Clinical symptoms (body weight, stool consistency and occult blood) were checked daily after colitis induction. Colon tissue was collected for histological damage scoring and quantification of tight junction protein expression. Stool samples were collected for microbiome analysis. Our study revealed prophylactic diosmectite treatment attenuated the severity of DSS colitis, which was apparent by significantly reduced weight loss (p = 0.022 vs. DSS), disease activity index (p = 0.0025 vs. DSS) and histological damage score (p = 0.023 vs. DSS). No significant effects were obtained for the expression of TJ proteins (claudin-2 and claudin-3) after diosmectite treatment. Characterization of the microbial composition by 16S amplicon NGS showed that diosmectite treatment modified the DSS-associated dysbiosis. Thus, diosmectites are promising candidates for therapeutic approaches to target intestinal inflammation and to identify possible underlying mechanisms of diosmectites in further studies.


Assuntos
Bactérias/classificação , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Microbiota/efeitos dos fármacos , Silicatos/administração & dosagem , Administração Oral , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Peso Corporal/efeitos dos fármacos , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Fezes/microbiologia , Masculino , Camundongos Endogâmicos BALB C , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Índice de Gravidade de Doença , Silicatos/farmacologia , Proteínas de Junções Íntimas/metabolismo , Resultado do Tratamento
4.
Int J Syst Evol Microbiol ; 68(10): 3285-3291, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30156532

RESUMO

Two Listeria-like isolates obtained from mangrove swamps in Goa, India were characterized using polyphasic combinations of phenotypic, chemotaxonomic and whole-genome sequence (WGS)-based approaches. The isolates presented as short, non-spore-forming, Gram-positive rods, that were non-motile, oxidase-negative, catalase-positive and exhibited α-haemolysis on 5 % sheep- and horse-blood agar plates. The 16S rRNA gene sequences exhibited 93.7-99.7 % nucleotide identity to other Listeria species and had less than 92 % nucleotide identity to species of closely related genera, indicating that the isolates are de facto members of the genus Listeria. Their overall fatty acid composition resembled that of other Listeria species, with quantitative differences in iso C15 : 0, anteiso C15 : 0, iso C16 : 0, C16 : 0, iso C17 : 0 and anteiso C17 : 0 fatty acid profiles. Phylogeny based on 406 core coding DNA sequences grouped these two isolates in a monophyletic clade within the genus Listeria. WGS-based average nucleotide identity and in silico DNA-DNA hybridization values were lower than the recommended cut-off values of 95 and 70 %, respectively, to the other Listeria species, indicating that they are founding members of a novel Listeria species. We suggest the name Listeriagoaensis sp. nov. be created and the type strain is ILCC801T (=KCTC 33909;=DSM 29886;=MCC 3285).


Assuntos
Listeria/classificação , Filogenia , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Índia , Listeria/genética , Listeria/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Rhizophoraceae , Análise de Sequência de DNA
5.
Can J Microbiol ; 61(9): 637-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26245135

RESUMO

The precise delineation of lineages and clonal groups are a prerequisite to examine within-species genetic variations, particularly with respect to pathogenic potential. A whole-genome-based approach was used to subtype and subgroup isolates of Listeria monocytogenes. Core-genome typing was performed, employing 3 different approaches: total core genes (CG), high-scoring segment pairs (HSPs), and average nucleotide identity (ANI). Examination of 113 L. monocytogenes genomes available in-house and in public domains revealed 33 phylogenomic groups (PGs). Each PG could be differentiated into a number of genomic types (GTs), depending on the approach used: HSPs (n = 57 GTs), CG (n = 71 GTs), and ANI (n = 83 GTs). Demarcation of the PGs was concordant with the 4 known lineages and led to the identification of sublineages in the lineage groups I, II, and III. In addition, PG assignments had discriminatory power similar to multi-virulence-locus sequence typing types and clonal complexes of multilocus sequence typing. Clustering of genomically highly similar isolates from different countries, sources, and isolation dates using whole-genome-based PG suggested that dispersion of phylogenomic clones of L. monocytogenes preceded their subsequent evolution. Classification according to PG may act as a guideline for future epidemiological studies.


Assuntos
Listeria monocytogenes/classificação , Listeria monocytogenes/isolamento & purificação , Filogenia , Variação Genética , Genômica , Humanos , Listeria monocytogenes/genética , Listeriose , Tipagem de Sequências Multilocus
6.
Gut Microbes ; 15(2): 2247019, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37614093

RESUMO

Dysbiosis of the gut microbiome and a pathological immune response in intestinal tissues form the basis of Crohn's disease (CD), which is a debilitating disease with relevant morbidity and mortality. It is increasing in childhood and adolescents, due to western life-style and nutrition and a large set of predisposing genetic factors. Crohn's disease-associated genetic mutations play an essential role in killing pathogens, altering mucosal barrier function, and protecting the host microbiome, suggesting an important pathogenic link. The intestinal microbiome is highly variable and can be influenced by environmental factors. Changes in microbial composition and a reduction in species diversity have been shown to be central features of disease progression and are therefore the target of therapeutic approaches. In this review, we summarize the current literature on the role of the gut microbiome in childhood, adolescent, and adult CD, current therapeutic options, and their impact on the microbiome.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Adolescente , Adulto , Criança , Doença de Crohn/terapia , Progressão da Doença
7.
Biomed Pharmacother ; 167: 115568, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793274

RESUMO

Ulcerative colitis (UC) is a severe inflammatory bowel disease (IBD) characterized by multifactorial complex disorders triggered by environmental factors, genetic susceptibility, and also gut microbial dysbiosis. Faecalibacterium prausnitzii, Bacteroides faecis, and Roseburia intestinalis are underrepresented species in UC patients, leading to the hypothesis that therapeutic application of those bacteria could ameliorate clinical symptoms and disease severity. Acute colitis was induced in mice by 3.5% DSS, and the commensal bacterial species were administered by oral gavage simultaneously with DSS treatment for up to 7 days. The signs of colonic inflammation, the intestinal barrier integrity, the proportion of regulatory T cells (Tregs), and the expression of pro-inflammatory and anti-inflammatory cytokines were quantified. The concentrations of SCFAs in feces were measured using Gas-liquid chromatography. The gut microbiome was analyzed in all treatment groups at the endpoint of the experiment. Results were benchmarked against a contemporary mesalazine treatment regime. We show that commensal species alone and in combination reduced disease activity index scores, inhibited colon shortening, strengthened the colonic epithelial barrier, and positively modulated tight junction protein expression. The expression level of pro-inflammatory cytokines was significantly reduced. Immune modulation occurred via inhibition of the loss of CD4 +CD25 +Treg cells in the spleen. Our study proofed that therapeutic application of F. prausnitzii, B. faecis, and R. intestinalis significantly ameliorated DSS-induced colitis at the level of clinical symptoms, histological inflammation, and immune status. Our data suggest that these positive effects are mediated by immune-modulatory pathways and influence on Treg/Th17 balance.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Faecalibacterium prausnitzii/metabolismo , Células Th17 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colo , Citocinas/metabolismo , Bactérias/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
8.
Pathogens ; 11(1)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35056026

RESUMO

Necrotizing fasciitis of the head and neck is a rare, very severe disease, which, in most cases, originates from odontogenic infections and frequently ends with the death of the patient. Rapid surgical intervention in combination with a preferably pathogen-specific antibiotic therapy can ensure patients' survival. The question arises concerning which pathogens are causative for the necrotizing course of odontogenic inflammations. Experimental 16S-rRNA gene analysis with next-generation sequencing and bioinformatics was used to identify the microbiome of patients treated with an odontogenic necrotizing infection and compared to the result of the routine culture. Three of four patients survived the severe infection, and one patient died due to septic multiorgan failure. Microbiome determination revealed findings comparable to typical odontogenic abscesses. A specific pathogen which could be causative for the necrotizing course could not be identified. Early diagnosis and rapid surgical intervention and a preferably pathogen-specific antibiotic therapy, also covering the anaerobic spectrum of odontogenic infections, are the treatments of choice. The 16S-rRNA gene analysis detected significantly more bacteria than conventional methods; therefore, molecular methods should become a part of routine diagnostics in medical microbiology.

9.
FEMS Microbiol Lett ; 368(8)2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864460

RESUMO

Glycerol (Gly) can be dissimilated by two pathways in bacteria. Either this sugar alcohol is first oxidized to dihydroxyacetone (DHA) and then phosphorylated or it is first phosphorylated to glycerol-3-phosphate (GlyP) followed by oxidation. Oxidation of GlyP can be achieved by NAD-dependent dehydrogenases or by a GlyP oxidase. In both cases, dihydroxyacetone phosphate is the product. Genomic analysis showed that Enterococcus faecium harbors numerous genes annotated to encode activities for the two pathways. However, our physiological analyses of growth on glycerol showed that dissimilation is limited to aerobic conditions and that despite the presence of genes encoding presumed GlyP dehydrogenases, the GlyP oxidase is essential in this process. Although E. faecium contains an operon encoding the phosphotransfer protein DhaM and DHA kinase, which are required for DHA phosphorylation, it is unable to grow on DHA. This operon is highly expressed in stationary phase but its physiological role remains unknown. Finally, data obtained from sequencing of a transposon mutant bank of E. faecium grown on BHI revealed that the GlyP dehydrogenases and a major intrinsic family protein have important but hitherto unknown physiological functions.


Assuntos
Di-Hidroxiacetona/metabolismo , Enterococcus faecium/enzimologia , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterococcus faecium/genética , Glicerolfosfato Desidrogenase/genética , Óperon
10.
Microorganisms ; 9(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34576799

RESUMO

Oral bacteria have been associated with several systemic diseases. Moreover, the abundance of bacteria associated with caries has been found to be higher in patients with congenital heart disease (CHD) than in healthy control groups (HCGs). Therefore, this study aimed to evaluate the dental microbiota in children with CHD compared to a HCG. The aim was to describe and compare the carious microbiome regarding the composition, diversity, and taxonomic patterns in these two groups. Twenty children with CHD and a HCG aged between two and six years participated. All of them were affected by early childhood caries. Microbiome profiling indicated that Fusobacterium, Prevotella, Capnocytophaga, and Oribacterium were more abundant in the CHD group, whereas Lactobacillus and Rothia were predominant in the HCG. Furthermore, microbiome analysis revealed three distinct clusters for the CHD and HCG samples. In the first cluster, we found mainly the genera Lactobacillus and Coriobacteriaceae. The second cluster showed a higher relative abundance of the genus Actinomyces and a more diverse composition consisting of more genera with a smaller relative lot. The third cluster was characterized by two genera, Streptococcus and Veillonella. These data can help us to understand the oral microbial community structures involved in caries and endodontic infections of pre-school children in relation to the general health of these high-risk patients.

11.
Microorganisms ; 9(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208451

RESUMO

Severe odontogenic abscesses are regularly caused by bacteria of the physiological oral microbiome. However, the culture of these bacteria is often prone to errors and sometimes does not result in any bacterial growth. Furthermore, various authors found completely different bacterial spectra in odontogenic abscesses. Experimental 16S rRNA gene next-generation sequencing analysis was used to identify the microbiome of the saliva and the pus in patients with a severe odontogenic infection. The microbiome of the saliva and the pus was determined for 50 patients with a severe odontogenic abscess. Perimandibular and submandibular abscesses were the most commonly observed diseases at 15 (30%) patients each. Polymicrobial infections were observed in 48 (96%) cases, while the picture of a mono-infection only occurred twice (4%). On average, 31.44 (±12.09) bacterial genera were detected in the pus and 41.32 (±9.00) in the saliva. In most cases, a predominantly anaerobic bacterial spectrum was found in the pus, while saliva showed a similar oral microbiome to healthy individuals. In the majority of cases, odontogenic infections are polymicrobial. Our results indicate that these are mainly caused by anaerobic bacterial strains and that aerobic and facultative anaerobe bacteria seem to play a more minor role than previously described by other authors. The 16S rRNA gene analysis detects significantly more bacteria than conventional methods and molecular methods should therefore become a part of routine diagnostics in medical microbiology.

12.
Biology (Basel) ; 10(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34571794

RESUMO

Odontogenic abscesses are usually caused by bacteria of the oral microbiome. However, the diagnostic culture of these bacteria is often prone to errors and sometimes fails completely due to the fastidiousness of the relevant bacterial species. The question arises whether additional pathogen diagnostics using molecular methods provide additional benefits for diagnostics and therapy. Experimental 16S rRNA gene analysis with next-generation sequencing (NGS) and bioinformatics was used to identify the microbiome of the pus in patients with severe odontogenic infections and was compared to the result of standard diagnostic culture. The pus microbiome was determined in 48 hospitalized patients with a severe odontogenic abscess in addition to standard cultural pathogen detection. Cultural detection was possible in 41 (85.42%) of 48 patients, while a pus-microbiome could be determined in all cases. The microbiomes showed polymicrobial infections in 46 (95.83%) cases, while the picture of a mono-infection occurred only twice (4.17%). In most cases, a predominantly anaerobic spectrum with an abundance of bacteria was found in the pus-microbiome, while culture detected mainly Streptococcus, Staphylococcus, and Prevotella spp. The determination of the microbiome of odontogenic abscesses clearly shows a higher number of bacteria and a significantly higher proportion of anaerobes than classical cultural methods. The 16S rRNA gene analysis detects considerably more bacteria than conventional cultural methods, even in culture-negative samples. Molecular methods should be implemented as standards in medical microbiology diagnostics, particularly for the detection of polymicrobial infections with a predominance of anaerobic bacteria.

13.
Pathogens ; 9(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998201

RESUMO

Delayed-onset infections are rare postoperative complications of lower third molar extractions. This article presents a case of a chronic combined hard and soft tissue infection after the extraction of a third molar, where the causative organisms could only be elucidated by molecular methods. Experimental 16S-rRNA gene analysis with next-generation sequencing and bioinformatics was used to identify the bacterial spectrum of the infection. 16S-rRNA gene analysis delivered the microbiome of the abscessing inflammation while standard culture and laboratory examinations were all sterile. The microbiome showed a mixed bacterial infection with a dominance of Delftia and Alcanivorax (spp.) besides other bacteria of the normal oral flora. Using 16S-rRNA-gene analysis, next-generation sequencing, and bioinformatics, a new type of chronic wound infection after wisdom tooth extraction was found. The property of Delftia and Alcanivorax (spp.) as water-affine environmental bacteria raises suspicion of infection from contaminated water from a dental unit. Thus, osteotomies of teeth should only be done with sterile cooling water. The 16S-rRNA gene analysis should become a part of the routine diagnostics in medical microbiology.

14.
Cells ; 9(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846954

RESUMO

The Th2 cytokine IL-13 is involved in biliary epithelial injury and liver fibrosis in patients as well as in animal models. The aim of this study was to investigate IL-13 as a therapeutic target during short term and chronic intrahepatic cholestasis in an Abcb4-knockout mouse model (Abcb4-/-). Lack of IL-13 protected Abcb4-/- mice transiently from cholestasis. This decrease in serum bile acids was accompanied by an enhanced excretion of bile acids and a normalization of fecal bile acid composition. In Abcb4-/-/IL-13-/- double knockout mice, bacterial translocation to the liver was significantly reduced and the intestinal microbiome resembled the commensal composition in wild type animals. In addition, 52-week-old Abcb4-/-IL-13-/- mice showed significantly reduced hepatic fibrosis. Abcb4-/- mice devoid of IL-13 transiently improved cholestasis and converted the composition of the gut microbiota towards healthy conditions. This highlights IL-13 as a potential therapeutic target in biliary diseases.


Assuntos
Colestase Intra-Hepática/terapia , Disbiose/terapia , Interleucina-13/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout
15.
Parasit Vectors ; 12(1): 11, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616666

RESUMO

BACKGROUND: Arthropod-borne diseases remain a major health-threat for humans and animals worldwide. To estimate the distribution of pathogenic agents and especially Bartonella spp., we conducted tick microbiome analysis and determination of the infection status of wild animals, pets and pet owners in the state of Hesse, Germany. RESULTS: In total, 189 engorged ticks collected from 163 animals were tested. Selected ticks were analyzed by next generation sequencing (NGS) and confirmatory PCRs, blood specimens of 48 wild animals were analyzed by PCR to confirm pathogen presence and sera of 54 dogs, one cat and 11 dog owners were analyzed by serology. Bartonella spp. were detected in 9.5% of all ticks and in the blood of 17 roe deer. Further data reveal the presence of the human and animal pathogenic species of genera in the family Spirochaetaceae (including Borrelia miyamotoi and Borrelia garinii), Bartonella spp. (mainly Bartonella schoenbuchensis), Rickettsia helvetica, Francisella tularensis and Anaplasma phagocytophilum in ticks. Co-infections with species of several genera were detected in nine ticks. One dog and five dog owners were seropositive for anti-Bartonella henselae-antibodies and one dog had antibodies against Rickettsia conorii. CONCLUSIONS: This study provides a snapshot of pathogens circulating in ticks in central Germany. A broad range of tick-borne pathogens are present in ticks, and especially in wild animals, with possible implications for animal and human health. However, a low incidence of Bartonella spp., especially Bartonella henselae, was detected. The high number of various detected pathogens suggests that ticks might serve as an excellent sentinel to detect and monitor zoonotic human pathogens.


Assuntos
Doenças do Gato/transmissão , Cervos/microbiologia , Doenças do Cão/transmissão , Infecções por Bactérias Gram-Negativas/transmissão , Microbiota , Doenças Transmitidas por Carrapatos/transmissão , Carrapatos/microbiologia , Animais , Doenças do Gato/epidemiologia , Doenças do Gato/microbiologia , Gatos , Cervos/parasitologia , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Cães , Feminino , Alemanha/epidemiologia , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Masculino , Animais de Estimação , Risco , Alinhamento de Sequência/veterinária , Estudos Soroepidemiológicos , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia
16.
Front Immunol ; 10: 2106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616404

RESUMO

Streptococcus pneumoniae is the most frequent cause of community-acquired pneumonia. Endogenous host defense molecules such as peptidoglycan recognition protein 4 (PGLYRP4) might influence the course of this disease. To the best of our knowledge, there are no reports on the relevance of PGLYRP4 in pneumonia. Therefore, wild type (WT) and PGLYRP4-deficient (PGLYRP4KO) mice were analyzed in an in vivo and in vitro experimental setting to examine the influence of PGLYRP4 on the course of pneumococcal pneumonia. Furthermore, caecal 16S rRNA microbiome analysis was performed, and microbiota were transferred to germfree WT mice to assess the influence of microbiotal communities on the bacterial burden. Mice lacking PGLYRP4 displayed an enhanced bacterial clearance in the lungs, and fewer mice developed bacteremia. In addition, an increased recruitment of immune cells to the site of infection, and an enhanced bacterial killing by stronger activation of phagocytes could be shown. This may depend partly on the detected higher expression of complement factors, interferon-associated genes, and the higher pro-inflammatory cytokine response in isolated primary PGLYRP4KO vs. WT cells. This phenotype is underlined by changes in the complexity and composition of the caecal microbiota of PGLYRP4KO compared to WT mice. Strikingly, we provided evidence, by cohousing and stable transfer of the respective WT or PGLYRP4KO mice microbiota into germfree WT mice, that the changes of the microbiota are responsible for the improved clearance of S. pneumoniae lung infection. In conclusion, the deficiency of PGLYRP4, a known antibacterial protein, leads to changes in the gut microbiota. Thus, alterations in the microbiota can change the susceptibility to S. pneumoniae lung infection independently of the host genotype.


Assuntos
Proteínas de Transporte/imunologia , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Pulmão/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fagocitose/imunologia , Pneumonia Pneumocócica/imunologia , RNA Ribossômico 16S/imunologia , Streptococcus pneumoniae/imunologia
17.
Front Microbiol ; 9: 3100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619179

RESUMO

The deer ked (Lipoptena cervi) is distributed in Europe, North America, and Siberia and mainly infests cervids as roe deer, fallow deer, and moose. From a one health perspective, deer keds occasionally bite other animals or humans and are a potential vector for Bartonella schoenbuchensis. This bacterium belongs to a lineage of ruminant-associated Bartonella spp. and is suspected to cause dermatitis and febrile diseases in humans. In this study, we analyzed the microbiome from 130 deer keds collected from roe deer, fallow deer and humans in the federal states of Hesse, Baden-Wuerttemberg, and Brandenburg, Germany. Endosymbiontic Arsenophonus spp. and Bartonella spp. represented the biggest portion (~90%) of the microbiome. Most Bartonella spp. (n = 93) were confirmed to represent B. schoenbuchensis. In deer keds collected from humans, no Bartonella spp. were detected. Furthermore, Acinetobacter spp. were present in four samples, one of those was confirmed to represent A. baumannii. These data suggest that deer keds harbor only a very narrow spectrum of bacteria which are potentially pathogenic for animals of humans.

18.
Sci Rep ; 8(1): 5681, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29632402

RESUMO

Several species of the Gram-negative genus Bordetella are the cause of respiratory infections in mammals and birds, including whooping cough (pertussis) in humans. Very recently, a novel atypical species, Bordetella pseudohinzii, was isolated from laboratory mice. These mice presented no obvious clinical symptoms but elevated numbers of neutrophils in bronchoalveolar lavage fluid and inflammatory signs in histopathology. We noted that this species can occur at high prevalence in a mouse facility despite regular pathogen testing according to the FELASA-recommendations. Affected C57BL/6 J mice had, in addition to the reported pulmonary alterations, tracheal inflammation with reduced numbers of ciliated cells, slower ciliary beat frequency, and largely (>50%) compromised cilia-driven particle transport speed on the mucosal surface, a primary innate defence mechanism. In an in vitro-model, Bordetella pseudohinzii attached to respiratory kinocilia, impaired ciliary function within 4 h and caused epithelial damage within 24 h. Regular testing for this ciliotropic Bordetella species and excluding it from colonies that provide mice for lung research shall be recommended. On the other hand, controlled colonization and infection with Bordetella pseudohinzii may serve as an experimental model to investigate mechanisms of mucociliary clearance and microbial strategies to escape from this primary innate defence response.


Assuntos
Infecções por Bordetella/veterinária , Bordetella/fisiologia , Infecções Respiratórias/veterinária , Doenças dos Roedores/microbiologia , Traqueia/microbiologia , Animais , Bordetella/classificação , Bordetella/isolamento & purificação , Bordetella/patogenicidade , Infecções por Bordetella/epidemiologia , Infecções por Bordetella/microbiologia , Cílios/microbiologia , DNA Bacteriano/análise , Camundongos , Camundongos Endogâmicos C57BL , Depuração Mucociliar , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Análise de Sequência de DNA , Traqueia/metabolismo , Traqueia/patologia
19.
Front Microbiol ; 6: 1199, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579105

RESUMO

Listeria monocytogenes is a bacterial pathogen and causative agent for the foodborne infection listeriosis, which is mainly a threat for pregnant, elderly, or immunocompromised individuals. Due to its ability to invade and colonize diverse eukaryotic cell types including cells from invertebrates, L. monocytogenes has become a well-established model organism for intracellular growth. Almost 10 years ago, we and others presented the first whole-genome microarray-based intracellular transcriptome of L. monocytogenes. With the advent of newer technologies addressing transcriptomes in greater detail, we revisit this work, and analyze the intracellular transcriptome of L. monocytogenes during growth in murine macrophages using a deep sequencing based approach. We detected 656 differentially expressed genes of which 367 were upregulated during intracellular growth in macrophages compared to extracellular growth in Brain Heart Infusion broth. This study confirmed ∼64% of all regulated genes previously identified by microarray analysis. Many of the regulated genes that were detected in the current study involve transporters for various metals, ions as well as complex sugars such as mannose. We also report changes in antisense transcription, especially upregulations during intracellular bacterial survival. A notable finding was the detection of regulatory changes for a subset of temperate A118-like prophage genes, thereby shedding light on the transcriptional profile of this bacteriophage during intracellular growth. In total, our study provides an updated genome-wide view of the transcriptional landscape of L. monocytogenes during intracellular growth and represents a rich resource for future detailed analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA