Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(35): 15601-6, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20713728

RESUMO

Fragile X syndrome is caused by the absence of functional fragile X mental retardation protein (FMRP), an RNA binding protein. The molecular mechanism of aberrant protein synthesis in fmr1 KO mice is closely associated with the role of FMRP in mRNA transport, delivery, and local protein synthesis. We show that GFP-labeled Fmr1 and CaMKIIalpha mRNAs undergo decelerated motion at 0-40 min after group I mGluR stimulation, and later recover at 40-60 min. Then we investigate targeting of mRNAs associated with FMRP after neuronal stimulation. We find that FMRP is synthesized closely adjacent to stimulated mGluR5 receptors. Moreover, in WT neurons, CaMKIIalpha mRNA can be delivered and translated in dendritic spines within 10 min in response to group I mGluR stimulation, whereas KO neurons fail to show this response. These data suggest that FMRP can mediate spatial mRNA delivery for local protein synthesis in response to synaptic stimulation.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Dendritos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hibridização in Situ Fluorescente , Cinética , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ligação Proteica , Transporte de RNA , RNA Mensageiro/genética , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Fatores de Tempo
2.
Proc Natl Acad Sci U S A ; 105(11): 4429-34, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18332424

RESUMO

Fragile X syndrome (FXS) has so far resisted efforts to define the basic cellular defects caused by the absence of a single protein, fragile X mental retardation protein (FMRP), because the patients have a wide variety of symptoms of varying severity. Immature-appearing dendritic spines on neurons found in FXS patients and fmr1-KO mice suggest a role for FMRP in modulating production of synaptic structural proteins. We isolated cortical synaptoneurosomes from WT and KO mice and studied MAPK pathway activation after group I metabotropic glutamate receptor (mGluR) stimulation. Here, we show that ERK in KO synaptoneurosomes is rapidly dephosphorylated upon mGluR1/5 stimulation, whereas it is phosphorylated in WT mice, suggesting that aberrant activation of phosphatases occurs in KO synapses in response to synaptic stimulation. In KO synapses, protein phosphatase 2A (PP2A) is overactivated after mGluR1 stimulation, and tyrosine phosphatase is overactivated after mGluR5 stimulation, causing the rapid deactivation of ERK. ERK activation can be restored in KO by pretreatment with phosphatase blockers; blocking of PP2A by okadaic acid could successfully restore normal ERK activation in KO synaptoneurosomes. We propose that overactivation of phosphatases in synapses may be a key deficit in FXS, which affects synaptic translation, transcription, and synaptic receptor regulation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Síndrome do Cromossomo X Frágil/enzimologia , Neurônios/enzimologia , Animais , Ativação Enzimática , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Fatores de Tempo
3.
Dev Psychobiol ; 53(5): 476-81, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21678395

RESUMO

Investigation of protein translation at the synapse, using functioning synaptic particles termed synaptoneurosomes, has led to identification of Fragile X protein as a key synaptic component. In its absence, some key mRNAs are translated more diffusely in the cell, and more slowly. Recent studies have implicated ERK (extracellular receptor regulated kinase) as a central factor in regulating the kinetics of translation at the synapse.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Neurônios/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
4.
Neuron ; 37(3): 417-31, 2003 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-12575950

RESUMO

The Fragile X mental retardation-1 (Fmr1) gene encodes a multifunctional protein, FMRP, with intrinsic RNA binding activity. We have developed an approach, antibody-positioned RNA amplification (APRA), to identify the RNA cargoes associated with the in vivo configured FMRP messenger ribonucleoprotein (mRNP) complex. Using APRA as a primary screen, putative FMRP RNA cargoes were assayed for their ability to bind directly to FMRP using traditional methods of assessing RNA-protein interactions, including UV-crosslinking and filter binding assays. Approximately 60% of the APRA-defined mRNAs directly associate with FMRP. By examining a subset of these mRNAs and their encoded proteins in brain tissue from Fmr1 knockout mice, we have observed that some of these cargoes as well as the proteins they encode show discrete changes in abundance and/or differential subcellular distribution. These data are consistent with spatially selective regulation of multiple biological pathways by FMRP.


Assuntos
Síndrome do Cromossomo X Frágil/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Animais , Anticorpos Monoclonais , Sondas de DNA/imunologia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/imunologia , Purinas/metabolismo , Frações Subcelulares
5.
J Neurosci Methods ; 172(2): 250-4, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-18571732

RESUMO

Western blots are used to estimate the relative concentrations of proteins of interest based on staining by specific antibodies. Quantitative measurements are often subject to error due to overloading of the loading control and over-reliance on normalization. We have found that at the protein concentrations normally used to quantify most low-abundance proteins of interest, frequently used single-protein loading controls, such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-actin, do not accurately reflect differences in protein concentration. Two total protein stains, SYPRO Ruby and Amido Black, were compared and found to be acceptable alternatives to single-protein controls. Although we cannot prove that high-abundance loading controls are inaccurate under all possible conditions, we conclude that the burden of proof should lie with the researcher to demonstrate that their loading control is reflective of quantitative differences in protein concentration.


Assuntos
Western Blotting/métodos , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/química , Neuroquímica/métodos , Coloração e Rotulagem/métodos , Negro de Amido/química , Sequência de Aminoácidos , Animais , Química Encefálica/fisiologia , Corantes/química , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/análise , Proteínas de Membrana/química , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/análise , Proteína Quinase 3 Ativada por Mitógeno/química , Compostos Organometálicos/química , Proteômica , Frações Subcelulares
6.
Am J Med Genet B Neuropsychiatr Genet ; 147B(7): 1253-7, 2008 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-18452182

RESUMO

Lack of production of the Fragile X Mental Retardation Protein (FMRP) leads to changes in dendritic morphology and resultant cognitive and behavioral manifestations characteristic of individuals with Fragile X syndrome (FXS). FMRP is an RNA-binding protein that is believed to regulate the translation of a large number (probably over 100) of other proteins, leading to a complex and variable set of symptoms in FXS. In a mouse model of FXS, we previously observed delayed initiation of synaptically localized protein synthesis in response to neurotransmitter stimulation, as compared to wild-type mice. We now likewise have observed delayed early-phase phosphorylation of extracellular-signal regulated kinase (ERK), a nodal point for cell signaling cascades, in both neurons and thymocytes of fmr-1 KO mice. We further report that early-phase kinetics of ERK activation in lymphocytes from human peripheral blood is delayed in a cohort of individuals with FXS, relative to normlal controls, suggesting a potential biomarker to measure metabolic status of disease for individuals with FXS.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Animais , Biomarcadores/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Timo/metabolismo , Timo/patologia , Fatores de Tempo
7.
J Neurosci ; 26(27): 7151-5, 2006 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-16822971

RESUMO

Behavioral experiences can modulate neural networks through changes in synaptic morphology and number. In contrast, abnormal morphogenesis of dendritic spines is associated with cognitive impairment, as in Fragile X syndrome. Dendritic or synaptic protein synthesis could provide the specificity and speed necessary for spine morphogenesis. Here, we highlight locally translated proteins shown to affect synaptic morphology (e.g., Fragile X mental retardation protein).


Assuntos
Espinhas Dendríticas/fisiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Biossíntese de Proteínas/fisiologia , Animais , Humanos , Plasticidade Neuronal/fisiologia
8.
J Neurosci ; 26(9): 2413-8, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16510718

RESUMO

Fragile X mental retardation protein (FMRP), the lack of which causes fragile X syndrome, is an RNA-binding protein encoded by the FMR1 gene. FMRP accompanies mRNAs from the nucleus to dendritic regions and is thought to regulate their translation at synapses. It has been shown that FMRP moves into nontranslating stress granules (SGs) during heat stress of cultured fibroblasts (Mazroui et al., 2002). We used a novel method to isolate SGs from neurons by virtue of their TIA-1 (T-cell intracellular antigen 1) protein component, and found that FMRP moved out of polyribosomes and into SGs subsequent to oxidative stress. We then examined FMRP changes in subcellular localization resulting from mechanically induced neuronal injury by placement of electrodes into the dentate gyrus and the perforant path of the hippocampus in vivo. During the first 10 min after electrode insertion into one hippocampus, FMRP shifted into SGs and away from polyribosomes, in both hippocampi. Although the injury discharge subsided beyond 10 s, FMRP levels in polyribosomes and stress granules did not return to basal levels until 30 min after electrode penetration. Our findings suggest that procedures for in vivo induction of long-term potentiation or long-term depression should incorporate a 30 min rest period after electrode insertion, and indicate that the contralateral hippocampus cannot be considered an unstimulated control tissue.


Assuntos
Arsenitos , Eletrodos/efeitos adversos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Polirribossomos/metabolismo , Estresse Fisiológico/metabolismo , Animais , Western Blotting/métodos , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Potenciais Evocados/efeitos da radiação , Lateralidade Funcional , Hipocampo/patologia , Imunoprecipitação/métodos , Masculino , Microscopia Eletrônica de Transmissão/métodos , Neurônios/patologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Long-Evans , Estresse Fisiológico/induzido quimicamente , Frações Subcelulares/metabolismo
9.
Am J Med Genet ; 111(2): 140-6, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12210340

RESUMO

Fragile-X syndrome is a common form of mental retardation resulting from the inability to produce the fragile-X mental retardation protein. The specific function of this protein is unknown; however, it has been proposed to play a role in developmental synaptic plasticity. Examination of human brain autopsy material has shown that fragile-X patients exhibit abnormalities in dendritic spine structure and number, suggesting a failure of normal developmental dendritic spine maturation and pruning in this syndrome. Similar results using a knockout mouse model have previously been described; however, it was noted in retrospect that the mice used in that study may have carried a mutation for retinal degeneration, which may have affected cell morphology in the visual cortex of those animals. In this study, dendritic spines on layer V pyramidal cells of visual cortices, taken from fragile-X knockout and wild-type control mice without the retinal degeneration mutation and stained using the Golgi-Cox method, were investigated for comparison with the human condition. Quantitative analyses of the lengths, morphologies, and numbers of dendritic spines, as well as amount of dendritic arbor and dendritic branching complexity, were conducted. The fragile-X mice exhibited significantly more long dendritic spines and significantly fewer short dendritic spines than control mice. Similarly, fragile-X mice exhibited significantly more dendritic spines with an immature-like morphology and significantly fewer with a more mature type morphology. However, unlike the human condition, fragile-X mice did not exhibit statistically significant dendritic spine density differences from controls. Fragile-X mice also did not demonstrate any significant differences from controls in dendritic tree complexity or dendritic arbor. Long dendritic spines with immature morphologies are characteristic of early development or a lack of sensory experience. These results are similar to those found in the human condition and further support a role for the fragile-X mental retardation protein specifically in normal dendritic spine developmental processes. They also support the validity of these mice as a model of fragile-X syndrome.


Assuntos
Dendritos/patologia , Síndrome do Cromossomo X Frágil/patologia , Neurônios/patologia , Células Piramidais/patologia , Córtex Visual/patologia , Animais , Síndrome do Cromossomo X Frágil/genética , Complexo de Golgi/patologia , Deficiência Intelectual/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout
10.
Microsc Res Tech ; 57(3): 156-8, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12112451

RESUMO

The neurological deficits exhibited by patients with Fragile X syndrome (FraX) have been attributed to the absence of the Fragile X Mental Retardation Protein (FMRP), the product of the FMR1 gene, which is nonfunctional in these individuals. While a great deal has been learned about FraX using non-invasive techniques and autopsy tissue from humans, the limited availability of subjects and specimens severely restricts the rate at which such data can be collected and the types of experimental questions posed. In view of these limitations, a transgenic mouse model of FraX has been constructed in which the FMR1 gene is selectively knocked out (KO) [Bakker et al. (1994) Cell 78:23-33]. These mice show molecular, morphological, and behavioral alterations consistent with phenotypes observed in FraX patients, making them good models to study the absence of FMRP expression.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Prosencéfalo/fisiopatologia , Proteínas de Ligação a RNA , Animais , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA