Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Ecol ; 90(3): 710-722, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314119

RESUMO

Global warming is severely impacting ecosystems and threatening ecosystem services as well as human well-being. While some species face extinction risk, several studies suggest the possibility that fast evolution may allow species to adapt and survive in spite of environmental changes. We assess how such evolutionary rescue extends to multitrophic communities and whether evolution systematically preserves biodiversity under global warming. More precisely, we expose simulated trophic networks of co-evolving consumers to warming under different evolutionary scenarios, which allows us to assess the effect of evolution on diversity maintenance. We also investigate how the evolution of body mass and feeding preference affects coexistence within a simplified consumer-resource module. Our simulations predict that the long-term diversity loss triggered by warming is considerably higher in scenarios where evolution is slowed down or switched off completely, indicating that eco-evolutionary feedback indeed helps to preserve biodiversity. However, even with fast evolution, food webs still experience vast disruptions in their structure and functioning. Reversing warming may thus not be sufficient to restore previous structures. Our findings highlight how the interaction between evolutionary rescue and changes in trophic structures constrains ecosystem responses to warming with important implications for conservation and management policies.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biodiversidade , Aquecimento Global
2.
J Anim Ecol ; 88(1): 164-177, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30280381

RESUMO

Understanding the mechanisms that regulate the dynamics of spatially structured populations (SSP) is a critical challenge for ecologists and conservation managers. Internal population processes such as births and deaths occur at a local level, while external processes such as dispersal take place at an inter-population level. At both levels, density dependence is expected to play a critical role. At a patch scale, demographic traits (e.g., survival, breeding success) and the population growth rate can be influenced by density either negatively (e.g., competition effect) or positively (e.g., Allee effects). At the scale of an SSP, although positive density-dependent dispersal has been widely reported, an increasing number of studies have highlighted negative density-dependent dispersal. While many studies have investigated the effects of density on population growth or on dispersal, few have simultaneously examined density-dependent effects at the scale of both the local population and the entire SSP. In this study, we examine how density is related to demographic processes at both the pond level (survival and population growth) and the SSP level (between-pond dispersal) in a pond-breeding amphibian, the great crested newt (Triturus cristatus). The study was based on 20 years of individual capture-recapture (CR) data (from 1996 to 2015) gathered from an SSP made up of 12 experimental ponds ("patches"). We first used a CR multievent model to estimate both survival and dispersal rates in specific ponds as a function of distance between ponds. Then, using a second CR multievent model, we examined whether survival and recapture rates were influenced by population density in a pond. Lastly, we used state-space time series models to investigate whether density affected population growth in each pond. Our results found a positive density-dependent effect on survival and a negative density-dependent effect on departure. In addition, the findings indicate that population growth was negatively related to density in all 12 ponds. These results support the hypothesis that in SSPs, density may have multiple and contrasting effects on demographic parameters and growth rates within local populations as well as on dispersal. This study underlines the need to better understand how density dependence may influence potential trade-offs between life-history strategies and life-history stages.


Assuntos
Lagoas , Crescimento Demográfico , Anfíbios , Animais , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA