Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38597311

RESUMO

A hybrid quantum mechanics/molecular mechanics setup was used to model electronically excited pentacene in the crystal phase. Particularly interesting in the context of singlet fission (SF) is the energetic location of the antiferromagnetically coupled multiexcitonic singlet state, 1(TT), and the ferromagnetically coupled analog in relation to the optically bright singlet state. To provide photophysical properties of the accessible spin manifold, combined density functional theory and multi-reference configuration interaction calculations were performed on pentacene dimers and a trimer, electrostatically embedded in the crystal. The likelihood of a quintet intermediate in the SF process was estimated by computing singlet-quintet electron spin-spin couplings employing the Breit-Pauli Hamiltonian. The performance of the applied methods was assessed on the pentacene monomer. The character of the optically bright state and the energetic location of the 1(TT) state depend strongly on the relative orientation of the pentacene units. In the V-shaped dimers and in the trimer, the optically bright state is dominated by local and charge transfer (CT) excitations, with admixtures of doubly excited configurations. The CT excitations gain weight upon geometry relaxation, thus supporting a CT-mediated SF mechanism as the primary step of the SF process. For the slip-stacked dimer, the energetic order of the bright and the 1(TT) states swaps upon geometry relaxation, indicating strong nonadiabatic coupling close to the Franck-Condon region-a prerequisite for a coherent SF process. The multiexcitonic singlet, triplet, and quintet states are energetically too far apart and their spin-spin couplings are too small to bring about a noteworthy multiplicity mixing.

2.
J Chem Theory Comput ; 20(2): 842-855, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198619

RESUMO

The tuning mechanism of pH can be extremely challenging to model computationally in complex biological systems, especially with respect to the photochemical properties. This article reports a protocol aimed at modeling pH-dependent photodynamics using a combination of constant-pH molecular dynamics and semiclassical nonadiabatic molecular dynamics simulations. With retinal photoisomerization in Anabaena sensory rhodopsin (ASR) as a testbed, we show that our protocol produces pH-dependent photochemical properties, such as the isomerization quantum yield or decay rates. We decompose our results into single-titrated residue contributions, identifying some key tuning amino acids. Additionally, we assess the validity of the single protonation state picture to represent the system at a given pH and propose the most populated protein charge state as a compromise between cost and accuracy.


Assuntos
Anabaena , Rodopsina , Fotoquímica , Rodopsina/química , Anabaena/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA