Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Bone ; 131: 115111, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31726107

RESUMO

As bone is used in a dynamic mechanical environment, understanding the structural origins of its time-dependent mechanical behaviour - and the alterations in metabolic bone disease - is of interest. However, at the scale of the mineralized fibrillar matrix (nanometre-level), the nature of the strain-rate dependent mechanics is incompletely understood. Here, we investigate the fibrillar- and mineral-deformation behaviour in a murine model of Cushing's syndrome, used to understand steroid induced osteoporosis, using synchrotron small- and wide-angle scattering/diffraction combined with in situ tensile testing at three strain rates ranging from 10-4 to 10-1 s-1. We find that the effective fibril- and mineral-modulus and fibrillar-reorientation show no significant increase with strain-rate in osteoporotic bone, but increase significantly in normal (wild-type) bone. By applying a fibril-lamellar two-level structural model of bone matrix deformation to fit the results, we obtain indications that altered collagen-mineral interactions at the nanoscale - along with altered fibrillar orientation distributions - may be the underlying reason for this altered strain-rate sensitivity. Our results suggest that an altered strain-rate sensitivity of the bone matrix in osteoporosis may be one of the contributing factors to reduced mechanical competence in such metabolic bone disorders, and that increasing this sensitivity may improve biomechanical performance.


Assuntos
Nanoestruturas , Osteoporose , Animais , Matriz Óssea , Osso e Ossos , Camundongos , Osteoporose/induzido quimicamente , Esteroides , Estresse Mecânico
2.
Calcif Tissue Int ; 85(1): 45-54, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19373504

RESUMO

Bone is constantly renewed over our lifetime through the process of bone (re)modeling. This process is important for bone to allow it to adapt to its mechanical environment and to repair damage from everyday life. Adaptation is thought to occur through the mechanosensitive response controlling the bone-forming and -resorbing cells. This report shows a way to extract quantitative information about the way remodeling is controlled using computer simulations. Bone resorption and deposition are described as two separate stochastic processes, during which a discrete bone packet is removed or deposited from the bone surface. The responses of the bone-forming and -resorbing cells to local mechanical stimuli are described by phenomenological remodeling rules. Our strategy was to test different remodeling rules and to evaluate the time evolution of the trabecular architecture in comparison to what is known from micro-CT measurements of real bone. In particular, we tested the reaction of virtual bone to standard therapeutic strategies for the prevention of bone deterioration, i.e., physical activity and medications to reduce bone resorption. Insensitivity of the bone volume fraction to reductions in bone resorption was observed in the simulations only for a remodeling rule including an activation barrier for the mechanical stimulus above which bone deposition is switched on. This is in disagreement with the commonly used rules having a so-called lazy zone.


Assuntos
Remodelação Óssea/fisiologia , Simulação por Computador , Algoritmos , Densidade Óssea , Osso e Ossos/anatomia & histologia
3.
Calcif Tissue Int ; 84(4): 313-23, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19219382

RESUMO

Fibroblast growth factor 23 (FGF23) overexpression has been identified as a causative factor for tumor-induced osteomalacia (TIO) characterized by hypophosphatemia due to increased renal phosphate wasting, low 1,25(OH)(2)D(3) serum levels, and low bone density. The effects of long-lasting disturbed phosphate homeostasis on bone mineralization are still not well understood. We report on a patient with a 12-year history of TIO, treated with 1,25(OH)(2)D(3) and phosphate, who finally developed hyperparathyroidism with gland hyperplasia before the tumor could be localized in the scapula and removed. During surgery a transiliac bone biopsy was obtained. FGF23 expression in the tumor cells was confirmed by in situ hybridization. Serum FGF23 levels as measured by ELISA were found to be extremely elevated before and decreased after removal of the tumor. Bone histology/histomorphometry and measurement of bone mineralization density distribution using quantitative backscattered electron imaging were performed on the bone biopsy. The data showed important surface osteoidosis and a slightly increased osteoblast but markedly decreased osteoclast number. The mineralized bone volume (-11%) and mineralized trabecular thickness (-18%) were low. The mean degree of mineralization of the bone matrix (-7%), the most frequent calcium concentration (-4.1%), and the amounts of fully mineralized bone (-40.3%) were distinctly decreased, while the heterogeneity of mineralization (+44.5%) and the areas of primary mineralization (+131.6%) were dramatically increased. We suggest that the elevated levels of FGF23 and/or low phosphate concentrations disturb the mineralization kinetics in vivo without affecting matrix mineralization of pre-existing bone packets.


Assuntos
Neoplasias Ósseas/complicações , Calcificação Fisiológica , Fatores de Crescimento de Fibroblastos/metabolismo , Hemangiopericitoma/complicações , Mesenquimoma/complicações , Osteomalacia/etiologia , Osteomalacia/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/cirurgia , Calcitriol/uso terapêutico , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Hemangiopericitoma/metabolismo , Hemangiopericitoma/cirurgia , Humanos , Hiperparatireoidismo/induzido quimicamente , Masculino , Mesenquimoma/metabolismo , Mesenquimoma/cirurgia , Pessoa de Meia-Idade , Osteomalacia/sangue , Osteomalacia/tratamento farmacológico , Neoplasias das Paratireoides/patologia , Paratireoidectomia , Escápula/patologia
4.
Bone ; 123: 76-85, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30898694

RESUMO

The osteocyte lacunar-canalicular network (LCN) penetrates bone and houses the osteocytes and their processes. Despite its rather low volume fraction, the LCN represents an outstanding large surface that is possibly used by the osteocytes to interact with the surrounding mineralized bone matrix thereby contributing to mineral homeostasis. The aim of this study was to quantitatively describe such contributions by spatially correlating the local density of the LCN with the mineral content at the same location in micrometer-sized volume elements in human osteons. For this purpose, 65 osteons from the femur midshaft from healthy adults (n = 4) and children (n = 2) were structurally characterized with two different techniques. The 3D structure of the LCN in the osteons was imaged with confocal laser scanning microscopy after staining the bone samples with rhodamine. Subsequent image analysis provided the canalicular length density, i.e. the total length of the canaliculi per unit volume (µm/µm3). Quantitative information on the mineral content (wt%Ca) from the identical regions was obtained using quantitative backscattered electron imaging. As the LCN-porosity lowers the mineral content, a negative correlation between Ca content and network density was expected. Calculations predict a reduction of around -0.97 fmol Ca per µm of network. However, the experiment revealed for 62 out of 65 osteons a positive correlation resulting in an average additional Ca loading of +1.15 fmol per µm of canalicular network, i.e. an accumulation of mineral has occurred at dense network regions. We hypothesize that this accumulation happens in the close vicinity of canaliculi forming mineral reservoirs that can be utilized by osteocytes. Significant differences found between individuals indicate that the extent of mineral loading of the reservoir zone reflects an important parameter for mineral homeostasis.


Assuntos
Matriz Óssea/metabolismo , Ósteon/metabolismo , Pré-Escolar , Feminino , Humanos , Microscopia Confocal , Pessoa de Meia-Idade , Osteócitos/metabolismo
5.
J Mech Behav Biomed Mater ; 90: 1-10, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30340070

RESUMO

Applications for skin derived collagen materials, such as leather and acellular dermal matrices, usually require both strength and flexibility. In general, both the tensile modulus (which has an impact on flexibility) and strength are known to increase with fiber alignment, in the tensile direction, for practically all collagen-based tissues. The structural basis for flexibility in leather was investigated and the moisture content was varied. Small angle X-ray scattering was used to determine collagen fibril orientation, elongation and lateral intermolecular spacing in leather conditioned by different controlled humidity environments. Flexibility was measured by a three point bending test. Leather was prepared by tanning under biaxial loading to create leather with increased fibril alignment and thus strength, but this treatment also increased the stiffness. As collagen aligns, it not only strengthens the material but it also stiffens because tensile loading is then applied along the covalent chain of the collagen molecules, rather than at an angle to it. Here it has been shown that with higher moisture content greater flexibility of the material develops as water absorption inside collagen fibrils produces a larger lateral spacing between collagen molecules. It is suggested that water provides a lubricating effect in collagen fibrils, enabling greater freedom of movement and therefore greater flexibility. When collagen molecules align in the strain direction during tanning, leather stiffens not only by the fiber alignment itself but also because collagen molecules pack closer together, reducing the ability of the molecules to move relative to each other.


Assuntos
Colágeno/metabolismo , Fenômenos Mecânicos , Pele/metabolismo , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Resistência à Tração
6.
Data Brief ; 21: 1220-1226, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456236

RESUMO

The data presented in this article are related to the research article entitled "Effect of collagen packing and moisture content on leather stiffness" (Kelly et al., 2018). This article describes how moisture content affects collagen packing and leather stiffness. Structural changes were experimentally introduced into ovine leather through biaxial strain during tanning (׳stretch tanning׳). Leather samples produced normally without strain (׳non-stretch tanned׳) and those produced by stretch tanning, were conditioned in a range of relative humidity environments and then analysed by small angle X-ray scattering and three point bend testing. The collagen D-spacing, lateral intermolecular spacing and flexural properties were measured under these varying moisture contents.

7.
Bone ; 40(5): 1308-19, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17337263

RESUMO

The inhomogeneous mineral content and its topographical distribution on a microscopic scale are major determinants of the mechanical quality of trabecular bone. The kinetics of bone tissue deposition and resorption together with the kinetics of the mineralization process determine the distribution of mineral in the tissue. The heterogeneity of the mineral content is described by the well-established bone mineralization density distribution (BMDD), which is experimentally accessible, e.g., using quantitative electron backscattering imaging (qBEI). In the present work, we demonstrate that the shape of the BMDD histogram of trabecular bone reflects directly the mineralization kinetics. Based on the experimental BMDD data of trabecular bone from healthy human adults and using a mathematical model for the remodeling and the mineralization process, the following main results were obtained. The peaked BMDD reflects necessarily a two-phase mineralization process with a fast primary phase and a slow secondary phase where the corresponding time constants differ three orders of magnitude. The obtained mineralization law, which describes the increase in the mineral content in a bone packet as a function of time, provides information not only about the initial mineralization surge, but also about the slow increase afterwards on the time scale of years. In addition to the mineralization kinetics the turnover rate of the remodeling process has a strong influence on the peak position and the shape of the BMDD. The described theoretical framework opens new possibilities for an analysis of experimentally measured BMDDs with respect to changes caused by diseases or treatments. It allows addressing whether changes in the BMDD have to be attributed to a variation in the turnover rate which consequently affects the density distribution or to a primary disorder in the mineralization process most likely reflecting alterations of the organic matrix. This is of important clinical interest because it helps to find therapeutic approaches directly targeting the primary etiological defects to correct the patients' BMDD towards normal BMDD.


Assuntos
Densidade Óssea/fisiologia , Calcificação Fisiológica/fisiologia , Adulto , Biópsia , Osso e Ossos/metabolismo , Feminino , Saúde , Humanos , Modelos Biológicos
8.
J Mech Behav Biomed Mater ; 29: 438-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24211353

RESUMO

For an assessment of the mechanical performance of bone, a quantitative description of its mechanical heterogeneity is necessary. Previously, scanning acoustic microscopy (SAM) was used as a non-destructive method to estimate bone stiffness on the micrometer scale. While up to now only the normal incidence of acoustic waves is taken into account, we extend in our study the evaluation procedure by considering the full opening of the acoustic lens. The importance of this technical aspect is demonstrated by determining the contrast in Young's modulus between newly formed osteons and the surrounding higher mineralized interstitial bone. Several regions of human cortical bone of a femur in cross-section were imaged. For all the regions quantitative backscattered-electron imaging (qBEI) to estimate the local mass density was combined with SAM measurements. These measurements reveal a non-monotonic dependence between acoustic reflectivity and Young's modulus, which shows that it is actually necessary to consider the lens opening in a quantitative way. This problem was experimentally and theoretically approached by using lenses with two different opening angles operated at different frequencies (52° at 400MHz and 80° at 820MHz) to image the same specimen. The mass density of bone in osteons was found to be 1930kg/m(3) on average, while the higher mineral content in interstitial bone results in a 9% increase of the density. The contrast in the effective Young's modulus E, as determined through SAM, is more pronounced, with an average value of 14GPa in osteons and a more than 60% increase in interstitial bone. Additionally, SAM maps show oscillations in E with a periodicity of the typical bone lamella thickness of approximately 7µm in both osteons and interstitial bone. This mechanical heterogeneity can be explained by the varying orientation of the mineralized collagen fibers.


Assuntos
Módulo de Elasticidade , Fêmur , Microscopia Acústica , Fenômenos Biomecânicos , Criança , Feminino , Humanos
9.
Biomech Model Mechanobiol ; 11(1-2): 147-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21431883

RESUMO

During secondary bone healing, different tissue types are formed within the fracture callus depending on the local mechanical and biological environment. Our aim was to understand the temporal succession of these tissue patterns for a normal bone healing progression by means of a basic mechanobiological model. The experimental data stemmed from an extensive, previously published animal experiment on sheep with a 3 mm tibial osteotomy. Using recent experimental data, the development of the hard callus was modelled as a porous material with increasing stiffness and decreasing porosity. A basic phenomenological model was employed with a small number of simulation parameters, which allowed comprehensive parameter studies. The model distinguished between the formation of new bone via endochondral and intramembranous ossification. To evaluate the outcome of the computer simulations, the tissue images of the simulations were compared with experimentally derived tissue images for a normal healing progression in sheep. Parameter studies of the threshold values for the regulation of tissue formation were performed, and the source of the biological stimulation (comprising e.g. stem cells) was varied. It was found that the formation of the hard callus could be reproduced in silico for a wide range of threshold values. However, the bridging of the fracture gap by cartilage on the periosteal side was observed only (i) for a rather specific choice of the threshold values for tissue differentiation and (ii) when assuming a strong source of biological stimulation at the periosteum.


Assuntos
Consolidação da Fratura/fisiologia , Modelos Biológicos , Especificidade de Órgãos , Animais , Fenômenos Biomecânicos/fisiologia , Simulação por Computador , Humanos , Organogênese , Osteotomia , Transição de Fase , Fatores de Tempo
10.
J Biomech ; 44(3): 517-23, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20965507

RESUMO

During secondary fracture healing, various tissue types including new bone are formed. The local mechanical strains play an important role in tissue proliferation and differentiation. To further our mechanobiological understanding of fracture healing, a precise assessment of local strains is mandatory. Until now, static analyses using Finite Elements (FE) have assumed homogenous material properties. With the recent quantification of both the spatial tissue patterns (Vetter et al., 2010) and the development of elastic modulus of newly formed bone during healing (Manjubala et al., 2009), it is now possible to incorporate this heterogeneity. Therefore, the aim of this study is to investigate the effect of this heterogeneity on the strain patterns at six successive healing stages. The input data of the present work stemmed from a comprehensive cross-sectional study of sheep with a tibial osteotomy (Epari et al., 2006). In our FE model, each element containing bone was described by a bulk elastic modulus, which depended on both the local area fraction and the local elastic modulus of the bone material. The obtained strains were compared with the results of hypothetical FE models assuming homogeneous material properties. The differences in the spatial distributions of the strains between the heterogeneous and homogeneous FE models were interpreted using a current mechanobiological theory (Isakson et al., 2006). This interpretation showed that considering the heterogeneity of the hard callus is most important at the intermediate stages of healing, when cartilage transforms to bone via endochondral ossification.


Assuntos
Calo Ósseo/fisiologia , Consolidação da Fratura/fisiologia , Animais , Módulo de Elasticidade/fisiologia , Feminino , Análise de Elementos Finitos , Fraturas Ósseas/patologia , Carneiro Doméstico , Estresse Mecânico
11.
J Mech Behav Biomed Mater ; 4(6): 879-87, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21616469

RESUMO

Human bone is constantly renewed through life via the process of bone remodelling, in which individual packets of bone are removed by osteoclasts and replaced by osteoblasts. Remodelling is mechanically controlled, where osteocytes embedded within the bone matrix are thought to act as mechanical sensors. In this computational work, a stochastic model for bone remodelling is used in which the renewal of bone material occurs by exchange of discrete bone packets. We tested different hypotheses of how the mechanical stimulus for bone remodelling is integrated by osteocytes and sent to actor cells on the bone's surface. A collective (summed) signal from multiple osteocytes as opposed to an individual (maximal) signal from a single osteocyte was found to lead to lower inner porosity and surface roughness of the simulated bone structure. This observation can be interpreted in that collective osteocyte signalling provides an effective surface tension to the remodelling process. Furthermore, the material heterogeneity due to remodelling was studied on a network of trabeculae. As the model is discrete, the age of individual bone packets can be monitored with time. The simulation results were compared with experimental data coming from quantitative back scattered electron imaging by transforming the information about the age of the bone packet into a mineral content. Discrepancies with experiments indicate that osteoclasts preferentially resorb low mineralized, i.e. young, bone at the bone's surface.


Assuntos
Remodelação Óssea , Osso e Ossos/fisiologia , Modelos Biológicos , Adulto , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Humanos , Minerais/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Processos Estocásticos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA