Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(6): e1009944, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759512

RESUMO

The rate of modern drug discovery using experimental screening methods still lags behind the rate at which pathogens mutate, underscoring the need for fast and accurate predictive simulations of protein evolution. Multidrug-resistant bacteria evade our defenses by expressing a series of proteins, the most famous of which is the 29-kilodalton enzyme, TEM ß-lactamase. Considering these challenges, we applied a covalent docking heuristic to measure the effects of all possible alanine 237 substitutions in TEM due to this codon's importance for catalysis and effects on the binding affinities of commercially-available ß-lactam compounds. In addition to the usual mutations that reduce substrate binding due to steric hindrance, we identified two distinctive specificity-shifting TEM mutations, Ala237Arg and Ala237Lys, and their respective modes of action. Notably, we discovered and verified through minimum inhibitory concentration assays that, while these mutations and their bulkier side chains lead to steric clashes that curtail ampicillin binding, these same groups foster salt bridges with the negatively-charged side-chain of the cephalosporin cefixime, widely used in the clinic to treat multi-resistant bacterial infections. To measure the stability of these unexpected interactions, we used molecular dynamics simulations and found the binding modes to be stable despite the application of biasing forces. Finally, we found that both TEM mutants also bind strongly to other drugs containing negatively-charged R-groups, such as carumonam and ceftibuten. As with cefixime, this increased binding affinity stems from a salt bridge between the compounds' negative moieties and the positively-charged side chain of the arginine or lysine, suggesting a shared mechanism. In addition to reaffirming the power of using simulations as molecular microscopes, our results can guide the rational design of next-generation ß-lactam antibiotics and bring the community closer to retaking the lead against the recurrent threat of multidrug-resistant pathogens.


Assuntos
Simulação de Dinâmica Molecular , beta-Lactamases , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Cefixima , Mutação , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , beta-Lactamas
2.
Proc Natl Acad Sci U S A ; 115(13): 3422-3427, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531067

RESUMO

The influence of population size (N) on natural selection acting on alleles that affect fitness has been understood for almost a century. As N declines, genetic drift overwhelms selection and alleles with direct fitness effects are rendered neutral. Often, however, alleles experience so-called indirect selection, meaning they affect not the fitness of an individual but the fitness distribution of its offspring. Some of the best-studied examples of indirect selection include alleles that modify aspects of the genetic system such as recombination and mutation rates. Here, we use analytics, simulations, and experimental populations of Saccharomyces cerevisiae to examine the influence of N on indirect selection acting on alleles that increase the genomic mutation rate (mutators). Mutators experience indirect selection via genomic associations with beneficial and deleterious mutations they generate. We show that, as N declines, indirect selection driven by linked beneficial mutations is overpowered by drift before drift can neutralize the cost of the deleterious load. As a result, mutators transition from being favored by indirect selection in large populations to being disfavored as N declines. This surprising phenomenon of sign inversion in selective effect demonstrates that indirect selection on mutators exhibits a profound and qualitatively distinct dependence on N.


Assuntos
Evolução Molecular , Taxa de Mutação , Mutação , Densidade Demográfica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Seleção Genética , Deriva Genética , Modelos Genéticos
3.
Mol Biol Evol ; 34(5): 1040-1054, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087769

RESUMO

A leading intellectual challenge in evolutionary genetics is to identify the specific phenotypes that drive adaptation. Enzymes offer a particularly promising opportunity to pursue this question, because many enzymes' contributions to organismal fitness depend on a comparatively small number of experimentally accessible properties. Moreover, on first principles the demands of enzyme thermostability stand in opposition to the demands of catalytic activity. This observation, coupled with the fact that enzymes are only marginally thermostable, motivates the widely held hypothesis that mutations conferring functional improvement require compensatory mutations to restore thermostability. Here, we explicitly test this hypothesis for the first time, using four missense mutations in TEM-1 ß-lactamase that jointly increase cefotaxime Minimum Inhibitory Concentration (MIC) ∼1500-fold. First, we report enzymatic efficiency (kcat/KM) and thermostability (Tm, and thence ΔG of folding) for all combinations of these mutations. Next, we fit a quantitative model that predicts MIC as a function of kcat/KM and ΔG. While kcat/KM explains ∼54% of the variance in cefotaxime MIC (∼92% after log transformation), ΔG does not improve explanatory power of the model. We also find that cefotaxime MIC rises more slowly in kcat/KM than predicted. Several explanations for these discrepancies are suggested. Finally, we demonstrate substantial sign epistasis in MIC and kcat/KM, and antagonistic pleiotropy between phenotypes, in spite of near numerical additivity in the system. Thus constraints on selectively accessible trajectories, as well as limitations in our ability to explain such constraints in terms of underlying mechanisms are observed in a comparatively "well-behaved" system.


Assuntos
Farmacorresistência Bacteriana/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Adaptação Fisiológica/genética , Antibacterianos/farmacologia , Evolução Biológica , Cefotaxima/farmacocinética , Cefotaxima/farmacologia , Epistasia Genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Evolução Molecular , Testes de Sensibilidade Microbiana , Modelos Genéticos , Mutação
4.
Annu Rev Ecol Evol Syst ; 48(1): 399-417, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31572069

RESUMO

Evolutionary biologists often predict the outcome of natural selection on an allele by measuring its effects on lifetime survival and reproduction of individual carriers. However, alleles affecting traits like sex, evolvability, and cooperation can cause fitness effects that depend heavily on differences in the environmental, social, and genetic context of individuals carrying the allele. This variability makes it difficult to summarize the evolutionary fate of an allele based solely on its effects on any one individual. Attempts to average over this variability can sometimes salvage the concept of fitness. In other cases evolutionary outcomes can only be predicted by considering the entire genealogy of an allele, thus limiting the utility of individual fitness altogether. We describe a number of intriguing new evolutionary phenomena that have emerged in studies that explicitly model long-term lineage dynamics and discuss implications for the evolution of infectious diseases.

5.
Heredity (Edinb) ; 121(5): 466-481, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29993041

RESUMO

In the last years, several genotypic fitness landscapes-combinations of a small number of mutations-have been experimentally resolved. To learn about the general properties of "real" fitness landscapes, it is key to characterize these experimental landscapes via simple measures of their structure, related to evolutionary features. Some of the most relevant measures are based on the selectively acessible paths and their properties. In this paper, we present some measures of evolutionary constraints based on (i) the similarity between accessible paths and (ii) the abundance and characteristics of "chains" of obligatory mutations, that are paths going through genotypes with a single fitter neighbor. These measures have a clear evolutionary interpretation. Furthermore, we show that chains are only weakly correlated to classical measures of epistasis. In fact, some of these measures of constraint are non-monotonic in the amount of epistatic interactions, but have instead a maximum for intermediate values. Finally, we show how these measures shed light on evolutionary constraints and predictability in experimentally resolved landscapes.


Assuntos
Evolução Molecular , Aptidão Genética , Seleção Genética , Epistasia Genética
6.
Mol Vis ; 23: 963-976, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29386871

RESUMO

Purpose: Optic nerve (ON) damage following nonarteritic anterior ischemic optic neuropathy (NAION) and its models is associated with neurodegenerative inflammation. Minocycline is a tetracycline derivative antibiotic believed to exert a neuroprotective effect by selective alteration and activation of the neuroinflammatory response. We evaluated minocycline's post-induction ability to modify early and late post-ischemic inflammatory responses and its retinal ganglion cell (RGC)-neuroprotective ability. Methods: We used the rodent NAION (rNAION) model in male Sprague-Dawley rats. Animals received either vehicle or minocycline (33 mg/kg) daily intraperitoneally for 28 days. Early (3 days) ON-cytokine responses were evaluated, and oligodendrocyte death was temporally evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. Cellular inflammation was evaluated with immunohistochemistry, and RGC preservation was compared with stereology of Brn3a-positive cells in flat mounted retinas. Results: Post-rNAION, oligodendrocytes exhibit a delayed pattern of apoptosis extending over a month, with extrinsic monocyte infiltration occurring only in the primary rNAION lesion and progressive distal microglial activation. Post-induction minocycline failed to improve retinal ganglion cell survival compared with the vehicle treated (893.14 vs. 920.72; p>0.9). Cytokine analysis of the rNAION lesion 3 days post-induction revealed that minocycline exert general inflammatory suppression without selective upregulation of cytokines associated with the proposed alternative or neuroprotective M2 inflammatory pathway. Conclusions: The pattern of cytokine release, extended temporal window of oligodendrocyte death, and progressive microglial activation suggests that selective neuroimmunomodulation, rather than general inflammatory suppression, may be required for effective repair strategies in ischemic optic neuropathies.


Assuntos
Antibacterianos/uso terapêutico , Apoptose , Minociclina/uso terapêutico , Oligodendroglia/patologia , Neurite Óptica/prevenção & controle , Neuropatia Óptica Isquêmica/tratamento farmacológico , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Arterite/tratamento farmacológico , Arterite/metabolismo , Arterite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Marcação In Situ das Extremidades Cortadas , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Injeções Intraperitoneais , Masculino , NADPH Oxidase 2/metabolismo , Neurite Óptica/metabolismo , Neurite Óptica/patologia , Neuropatia Óptica Isquêmica/metabolismo , Neuropatia Óptica Isquêmica/patologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição Brn-3A/metabolismo
7.
PLoS Comput Biol ; 12(1): e1004710, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26808374

RESUMO

The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions-drug concentration and drug type. We do so by studying the resistance mediated by Plasmodium falciparum dihydrofolate reductase (DHFR) to two related inhibitors-pyrimethamine and cycloguanil-across a breadth of drug concentrations. We first examine whether the adaptive landscapes for the two drugs are consistent with common definitions of cross-resistance. We then reconstruct all accessible pathways across the landscape, observing how their structure changes with drug environment. We offer a mechanism for non-linearity in the topography of accessible pathways by calculating of the interaction between mutation effects and drug environment, which reveals rampant patterns of epistasis. We then simulate evolution in several different drug environments to observe how these individual mutation effects (and patterns of epistasis) influence paths taken at evolutionary "forks in the road" that dictate adaptive dynamics in silico. In doing so, we reveal how classic metrics like the IC50 and minimal inhibitory concentration (MIC) are dubious proxies for understanding how evolution will occur across drug environments. We also consider how the findings reveal ambiguities in the cross-resistance concept, as subtle differences in adaptive landscape topography between otherwise equivalent drugs can drive drastically different evolutionary outcomes. Summarizing, we discuss the results with regards to their basic contribution to the study of empirical adaptive landscapes, and in terms of how they inform new models for the evolution of drug resistance.


Assuntos
Antimaláricos/farmacologia , Biologia Computacional/métodos , Resistência a Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Evolução Molecular , Humanos , Concentração Inibidora 50 , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Modelos Biológicos , Mutação , Proguanil/farmacologia , Pirimetamina/farmacologia , Triazinas/farmacologia
8.
Mol Biol Evol ; 32(7): 1774-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25767204

RESUMO

Understanding the driving forces behind protein evolution requires the ability to correlate the molecular impact of mutations with organismal fitness. To address this issue, we employ here metallo-ß-lactamases as a model system, which are Zn(II) dependent enzymes that mediate antibiotic resistance. We present a study of all the possible evolutionary pathways leading to a metallo-ß-lactamase variant optimized by directed evolution. By studying the activity, stability and Zn(II) binding capabilities of all mutants in the preferred evolutionary pathways, we show that this local fitness landscape is strongly conditioned by epistatic interactions arising from the pleiotropic effect of mutations in the different molecular features of the enzyme. Activity and stability assays in purified enzymes do not provide explanatory power. Instead, measurement of these molecular features in an environment resembling the native one provides an accurate description of the observed antibiotic resistance profile. We report that optimization of Zn(II) binding abilities of metallo-ß-lactamases during evolution is more critical than stabilization of the protein to enhance fitness. A global analysis of these parameters allows us to connect genotype with fitness based on quantitative biochemical and biophysical parameters.


Assuntos
Evolução Molecular , beta-Lactamases/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Biocatálise/efeitos dos fármacos , Cefalexina/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Epistasia Genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Cinética , Testes de Sensibilidade Microbiana , Mutação/genética , Periplasma/metabolismo , Temperatura , Zinco/metabolismo
9.
J Theor Biol ; 396: 132-43, 2016 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-26854875

RESUMO

Genotypic fitness landscapes are constructed by assessing the fitness of all possible combinations of a given number of mutations. In the last years, several experimental fitness landscapes have been completely resolved. As fitness landscapes are high-dimensional, simple measures of their structure are used as statistics in empirical applications. Epistasis is one of the most relevant features of fitness landscapes. Here we propose a new natural measure of the amount of epistasis based on the correlation of fitness effects of mutations. This measure has a natural interpretation, captures well the interaction between mutations and can be obtained analytically for most landscape models. We discuss how this measure is related to previous measures of epistasis (number of peaks, roughness/slope, fraction of sign epistasis, Fourier-Walsh spectrum) and how it can be easily extended to landscapes with missing data or with fitness ranks only. Furthermore, the dependence of the correlation of fitness effects on mutational distance contains interesting information about the patterns of epistasis. This dependence can be used to uncover the amount and nature of epistatic interactions in a landscape or to discriminate between different landscape models.


Assuntos
Epistasia Genética , Genótipo , Modelos Genéticos , Mutação
10.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503082

RESUMO

Bet hedging is a ubiquitous strategy for risk reduction in the face of unpredictable environmental change where a lineage lowers its variance in fitness across environments at the expense of also lowering its arithmetic mean fitness. Classically, the benefit of bet hedging has been quantified using geometric mean fitness (GMF); bet hedging is expected to evolve if and only if it has a higher GMF than the wild-type. We build upon previous research on the effect of incorporating stochasticity in phenotypic distribution, environment, and reproduction to investigate the extent to which these sources of stochasticity will impact the evolution of real-world bet hedging traits. We utilize both individual-based simulations and Markov chain numerics to demonstrate that modeling stochasticity can alter the sign of selection for the bet hedger compared to deterministic predictions. We find that bet hedging can be deleterious at small population sizes and beneficial at larger population sizes. This non-monotonic dependence of the sign of selection on population size, known as sign inversion, exists across parameter space for both conservative and diversified bet hedgers. We apply our model to published data of bet hedging strategies to show that sign inversion exists for biologically relevant parameters in two study systems: Papaver dubium, an annual poppy with variable germination phenology, and Salmonella typhimurium, a pathogenic bacteria that exhibits antibiotic persistence. Taken together, our results suggest that GMF is not enough to predict when bet hedging is adaptive.

11.
Trends Genet ; 26(9): 400-5, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20685006

RESUMO

Convergent phenotypes provide extremely valuable systems for studying the genetics of new adaptations. Accumulating studies on this topic have reported surprising cases of convergent evolution at the molecular level, ranging from gene families being recurrently recruited to identical amino acid replacements in distant lineages. Together, these different examples of genetic convergence suggest that molecular evolution is in some cases strongly constrained by a combination of limited genetic material suitable for new functions and a restricted number of substitutions that can confer specific enzymatic properties. We discuss approaches for gaining further insights into the causes of genetic convergence and their potential contribution to our understanding of how the genetic background determines the evolvability of complex organismal traits.


Assuntos
Evolução Molecular , Conversão Gênica , Animais , Aptidão Genética , Mutação , Fenótipo , Filogenia
12.
Nature ; 445(7126): 383-6, 2007 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-17251971

RESUMO

When attempting to understand evolution, we traditionally rely on analysing evolutionary outcomes, despite the fact that unseen intermediates determine its course. A handful of recent studies has begun to explore these intermediate evolutionary forms, which can be reconstructed in the laboratory. With this first view on empirical evolutionary landscapes, we can now finally start asking why particular evolutionary paths are taken.


Assuntos
Evolução Biológica , Seleção Genética , Animais , Sítios de Ligação , Epistasia Genética , Modelos Moleculares , Mutagênese
13.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243672

RESUMO

Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this study, we present the "multivariate MArginal ePIstasis Test" (mvMAPIT)-a multioutcome generalization of a recently proposed epistatic detection method which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact-thus, potentially alleviating much of the statistical and computational burden associated with conventional explicit search-based methods. Our proposed mvMAPIT builds upon this strategy by taking advantage of correlation structure between traits to improve the identification of variants involved in epistasis. We formulate mvMAPIT as a multivariate linear mixed model and develop a multitrait variance component estimation algorithm for efficient parameter inference and P-value computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome-wide association studies. With simulations, we illustrate the benefits of mvMAPIT over univariate (or single-trait) epistatic mapping strategies. We also apply mvMAPIT framework to protein sequence data from two broadly neutralizing anti-influenza antibodies and approximately 2,000 heterogeneous stock of mice from the Wellcome Trust Centre for Human Genetics. The mvMAPIT R package can be downloaded at https://github.com/lcrawlab/mvMAPIT.


Assuntos
Epistasia Genética , Estudo de Associação Genômica Ampla , Humanos , Animais , Camundongos , Fenótipo , Locos de Características Quantitativas , Algoritmos
14.
Physiol Rep ; 11(4): e15605, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36807809

RESUMO

To study whether diabetes mellitus (DM) would cause electrophysiological alterations in nodose ganglion (NG) neurons, we used patch clamp and intracellular recording for voltage and current clamp configuration, respectively, on cell bodies of NG from rats with DM. Intracellular microelectrodes recording, according to the waveform of the first derivative of the action potential, revealed three neuronal groups (A0 , Ainf , and Cinf ), which were differently affected. Diabetes only depolarized the resting potential of A0 (from -55 to -44 mV) and Cinf (from -49 to -45 mV) somas. In Ainf neurons, diabetes increased action potential and the after-hyperpolarization durations (from 1.9 and 18 to 2.3 and 32 ms, respectively) and reduced dV/dtdesc (from -63 to -52 V s-1 ). Diabetes reduced the action potential amplitude while increasing the after-hyperpolarization amplitude of Cinf neurons (from 83 and -14 mV to 75 and -16 mV, respectively). Using whole cell patch clamp recording, we observed that diabetes produced an increase in peak amplitude of sodium current density (from -68 to -176 pA pF-1 ) and displacement of steady-state inactivation to more negative values of transmembrane potential only in a group of neurons from diabetic animals (DB2). In the other group (DB1), diabetes did not change this parameter (-58 pA pF-1 ). This change in sodium current did not cause an increase in membrane excitability, probably explainable by the alterations in sodium current kinetics, which are also induced by diabetes. Our data demonstrate that diabetes differently affects membrane properties of different nodose neuron subpopulations, which likely have pathophysiological implications for diabetes mellitus.


Assuntos
Diabetes Mellitus , Neurônios Aferentes , Ratos , Animais , Neurônios Aferentes/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Sódio
15.
Proc Natl Acad Sci U S A ; 106(29): 12025-30, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19587242

RESUMO

The spread of high-level pyrimethamine resistance in Africa threatens to curtail the therapeutic lifetime of antifolate antimalarials. We studied the possible evolutionary pathways in the evolution of pyrimethamine resistance using an approach in which all possible mutational intermediates were created by site-directed mutagenesis and assayed for their level of drug resistance. The coding sequence for dihydrofolate reductase (DHFR) from the malaria parasite Plasmodium falciparum was mutagenized, and tests were carried out in Escherichia coli under conditions in which the endogenous bacterial enzyme was selectively inhibited. We studied 4 key amino acid replacements implicated in pyrimethamine resistance: N51I, C59R, S108N, and I164L. Using empirical estimates of the mutational spectrum in P. falciparum and probabilities of fixation based on the relative levels of resistance, we found that the predicted favored pathways of drug resistance are consistent with those reported in previous kinetic studies, as well as DHFR polymorphisms observed in natural populations. We found that 3 pathways account for nearly 90% of the simulated realizations of the evolution of pyrimethamine resistance. The most frequent pathway (S108N and then C59R, N51I, and I164L) accounts for more than half of the simulated realizations. Our results also suggest an explanation for why I164L is detected in Southeast Asia and South America, but not at significant frequencies in Africa.


Assuntos
Resistência a Medicamentos/efeitos dos fármacos , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Alelos , Animais , Bioensaio , Evolução Molecular , Concentração Inibidora 50 , Parasitos/efeitos dos fármacos , Parasitos/enzimologia , Parasitos/crescimento & desenvolvimento , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Polimorfismo Genético/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/genética
16.
Elife ; 112022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35880850

RESUMO

Analyzing how mutations affect the main protease of SARS-CoV-2 may help researchers develop drugs that are effective against current and future variants of the virus.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico , Proteases 3C de Coronavírus , Cisteína Endopeptidases , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases , SARS-CoV-2 , Proteínas não Estruturais Virais
17.
Commun Biol ; 5(1): 397, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484403

RESUMO

Single-cells grow by increasing their biomass and size. Here, we report that while mass and size accumulation rates of single Escherichia coli cells are exponential, their density and, thus, the levels of macromolecular crowding fluctuate during growth. As such, the average rates of mass and size accumulation of a single cell are generally not the same, but rather cells differentiate into increasing one rate with respect to the other. This differentiation yields a density homeostasis mechanism that we support mathematically. Further, we observe that density fluctuations can affect the reproduction rates of single cells, suggesting a link between the levels of macromolecular crowding with metabolism and overall population fitness. We detail our experimental approach and the "invisible" microfluidic arrays that enabled increased precision and throughput. Infections and natural communities start from a few cells, thus, emphasizing the significance of density-fluctuations when taking non-genetic variability into consideration.


Assuntos
Escherichia coli , Reprodução , Escherichia coli/metabolismo , Homeostase , Substâncias Macromoleculares/metabolismo
18.
Chem Biol Interact ; 359: 109890, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35318036

RESUMO

Eugenol (EUG) is a phenylpropanoid widely used in the food and cosmetic industries. It is commonly referred to in the literature by its biological activities such as antioxidant, anti-inflammatory, antimicrobial, and relaxing in organs of laboratory animals, especially in rodent vessels. However, its vasorelaxant potential in human tissue, has not been investigated. Thus, this study characterizes the vasodilatory effect of EUG in the human umbilical artery (HUA). HUAs were isolated, cleaned, sectioned (3-4 mm) and placed in an organ bath (10 mL Krebs Henseleit, 37 °C; and carbogenic mixture). EUG (100-1400 µM), obtained total relaxation of electromechanical contractions induced by KCl (60 mM), and pharmacomechanical contractions (30-1200 µM), induced by serotonin (10 µM) and by histamine (10 µM), showing statistically significant concentrations: 600 µM, 400 µM and 200 µM, and EC50 values: 759.8 ± 6.5 µM, 229.9 ± 7.9 and 279.0 ± 3.4 µM, respectively. EUG (1200 and 1400 µM) prevented the contraction promoted by BaCl2 (0.1-30 mM), similar to the effects of nifedipine (10 µM), sugesting the involvement of EUG in blocking VOCCs. In the presence of tetraethylammonium (10 µM), EUG (30-1200 µM) did not produce a total relaxation (88.6%), suggesting that an alternative pathway where potassium channels, may partially mediate EUG effect. In the presence of 4-aminopyridine (1 mM), glibenclamide (10 µM), and tetraethylammonium (1 mM), EUG relaxed HUAs 100%, although the pharmacological potency was statistically altered, demonstrating the participation of K+ channels (Kv, KATP, BKCa). Our data indicates that EUG has a vasorelaxant effect on HUAs, had a greater pharmacological potency in the serotoninergic pathway, showing effective participation of VOCCs and a partial modulation of K+ channels. These data suggest new possibilities for the use of EUG in human vascular dysfunctions, such as preeclampsia. More studies are necessary to confirm the safety and effectivity in future treatments.


Assuntos
Eugenol , Vasodilatadores , Animais , Artérias , Eugenol/farmacologia , Humanos , Tetraetilamônio/farmacologia , Cordão Umbilical , Vasodilatação , Vasodilatadores/farmacologia
19.
Mol Biol Evol ; 26(11): 2455-62, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19602543

RESUMO

Understanding the molecular details of the sequence of events in multistep evolutionary pathways can reveal the extent to which natural selection exploits regulatory mutations affecting expression, amino acid replacements affecting the active site, amino acid replacements affecting protein folding or stability, or variations affecting gene copy number. In experimentally exploring the adaptive landscape of the evolution of resistance to beta-lactam antibiotics in enteric bacteria, we noted that a regulatory mutation that increases beta-lactamase expression by about 2-fold has a very strong tendency to be fixed at or near the end of the evolutionary pathway. This pattern contrasts with previous experiments selecting for the utilization of novel substrates, in which regulatory mutations that increase expression are often fixed early in the process. To understand the basis of the difference, we carried out experiments in which the expression of beta-lactamase was under the control of a tunable arabinose promoter. We find that the fitness effect of an increase in gene expression is highly dependent on the catalytic activity of the coding sequence. An increase in expression of an inefficient enzyme has a negligible effect on drug resistance; however, the effect of an increase in expression of an efficient enzyme is very large. The contrast in the temporal incorporation of regulatory mutants between antibiotic resistance and the utilization of novel substrates is related to the nature of the function that relates enzyme activity to fitness. A mathematical model of beta-lactam resistance is examined in detail and shown to be consistent with the observed results.


Assuntos
Escherichia coli/classificação , Escherichia coli/genética , Evolução Molecular , Mutação/genética , Evolução Molecular Direcionada , Resistência Microbiana a Medicamentos/genética , Cinética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
20.
PLoS One ; 15(5): e0233509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470971

RESUMO

One of the long-standing holy grails of molecular evolution has been the ability to predict an organism's fitness directly from its genotype. With such predictive abilities in hand, researchers would be able to more accurately forecast how organisms will evolve and how proteins with novel functions could be engineered, leading to revolutionary advances in medicine and biotechnology. In this work, we assemble the largest reported set of experimental TEM-1 ß-lactamase folding free energies and use this data in conjunction with previously acquired fitness data and computational free energy predictions to determine how much of the fitness of ß-lactamase can be directly predicted by thermodynamic folding and binding free energies. We focus upon ß-lactamase because of its long history as a model enzyme and its central role in antibiotic resistance. Based upon a set of 21 ß-lactamase single and double mutants expressly designed to influence protein folding, we first demonstrate that modeling software designed to compute folding free energies such as FoldX and PyRosetta can meaningfully, although not perfectly, predict the experimental folding free energies of single mutants. Interestingly, while these techniques also yield sensible double mutant free energies, we show that they do so for the wrong physical reasons. We then go on to assess how well both experimental and computational folding free energies explain single mutant fitness. We find that folding free energies account for, at most, 24% of the variance in ß-lactamase fitness values according to linear models and, somewhat surprisingly, complementing folding free energies with computationally-predicted binding free energies of residues near the active site only increases the folding-only figure by a few percent. This strongly suggests that the majority of ß-lactamase's fitness is controlled by factors other than free energies. Overall, our results shed a bright light on to what extent the community is justified in using thermodynamic measures to infer protein fitness as well as how applicable modern computational techniques for predicting free energies will be to the large data sets of multiply-mutated proteins forthcoming.


Assuntos
Simulação de Dinâmica Molecular , Mutação , Dobramento de Proteína , beta-Lactamases/metabolismo , Ampicilina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Software , Termodinâmica , beta-Lactamases/química , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA