Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Br J Cancer ; 125(4): 582-592, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088988

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a dismal prognosis. There is increasing interest in targeting chromatin regulatory pathways in difficult-to-treat cancers. In preliminary studies, we found that KDM4A (lysine-specific histone demethylase 4) was overexpressed in MPM. METHODS: KDM4A protein expression was determined by immunohistochemistry or immunoblotting. Functional inhibition of KDM4A by targeted knockdown and small molecule drugs was correlated to cell growth using cell lines and a xenograft mouse model. Gene expression profiling was performed to identify KDM4A-dependent signature pathways. RESULTS: Levels of KDM4A were found to be significantly elevated in MPM patients compared to normal mesothelial tissue. Inhibiting the enzyme activity efficiently reduced cell growth in vitro and reduced tumour growth in vivo. KDM4A inhibitor-induced apoptosis was further enhanced by the BH3 mimetic navitoclax. KDM4A expression was associated with pathways involved in cell growth and DNA repair. Interestingly, inhibitors of the DNA damage and replication checkpoint regulators CHK1 (prexasertib) and WEE1 (adavosertib) within the DNA double-strand break repair pathway, cooperated in the inhibition of cell growth. CONCLUSIONS: The results establish a novel and essential role for KDM4A in growth in preclinical models of MPM and identify potential therapeutic approaches to target KDM4A-dependent vulnerabilities.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mesotelioma Maligno/patologia , Regulação para Cima , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Mesotelioma Maligno/tratamento farmacológico , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Camundongos , Pirazinas/administração & dosagem , Pirazinas/farmacologia , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nat Chem Biol ; 13(12): 1207-1215, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28967922

RESUMO

Oncogenic forms of the kinase FLT3 are important therapeutic targets in acute myeloid leukemia (AML); however, clinical responses to small-molecule kinase inhibitors are short-lived as a result of the rapid emergence of resistance due to point mutations or compensatory increases in FLT3 expression. We sought to develop a complementary pharmacological approach whereby proteasome-mediated FLT3 degradation could be promoted by inhibitors of the deubiquitinating enzymes (DUBs) responsible for cleaving ubiquitin from FLT3. Because the relevant DUBs for FLT3 are not known, we assembled a focused library of most reported small-molecule DUB inhibitors and carried out a cellular phenotypic screen to identify compounds that could induce the degradation of oncogenic FLT3. Subsequent target deconvolution efforts allowed us to identify USP10 as the critical DUB required to stabilize FLT3. Targeting of USP10 showed efficacy in preclinical models of mutant-FLT3 AML, including cell lines, primary patient specimens and mouse models of oncogenic-FLT3-driven leukemia.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tiofenos/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Estrutura Molecular , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Tiofenos/química , Células Tumorais Cultivadas , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
3.
Bioorg Med Chem ; 25(3): 838-846, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011204

RESUMO

TAK1 (transforming growth factor-ß-activated kinase 1) is an essential intracellular mediator of cytokine and growth factor signaling and a potential therapeutic target for the treatment of immune diseases and cancer. Herein we report development of a series of 2,4-disubstituted pyrimidine covalent TAK1 inhibitors that target Cys174, a residue immediately adjacent to the 'DFG-motif' of the kinase activation loop. Co-crystal structures of TAK1 with candidate compounds enabled iterative rounds of structure-based design and biological testing to arrive at optimized compounds. Lead compounds such as 2 and 10 showed greater than 10-fold biochemical selectivity for TAK1 over the closely related kinases MEK1 and ERK1 which possess an equivalently positioned cysteine residue. These compounds are smaller, more easily synthesized, and exhibit a different spectrum of kinase selectivity relative to previously reported macrocyclic natural product TAK1 inhibitors such as 5Z-7-oxozeanol.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 25(4): 1320-1328, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28038940

RESUMO

Targeted polypharmacology provides an efficient method of treating diseases such as cancer with complex, multigenic causes provided that compounds with advantageous activity profiles can be discovered. Novel covalent TAK1 inhibitors were validated in cellular contexts for their ability to inhibit the TAK1 kinase and for their polypharmacology. Several inhibitors phenocopied reported TAK1 inhibitor 5Z-7-oxozaenol with comparable efficacy and complementary kinase selectivity profiles. Compound 5 exhibited the greatest potency in RAS-mutated and wild-type RAS cell lines from various cancer types. A biotinylated derivative of 5, 27, was used to verify TAK1 binding in cells. The newly described inhibitors constitute useful tools for further development of multi-targeting TAK1-centered inhibitors for cancer and other diseases.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Humanos , MAP Quinase Quinase Quinases/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
6.
Cell Death Differ ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816579

RESUMO

Bromodomain containing protein 9 (BRD9), a member of the non-canonical BRG1/BRM-associated factor (ncBAF) chromatin remodeling complex, has been implicated as a synthetic lethal target in AML but its function in normal human hematopoiesis is unknown. In hematopoietic stem and progenitor cells (HSPC) genomic or chemical inhibition of BRD9 led to a proliferative disadvantage and loss of stem cells in vitro. Human HSPCs with reduced BRD9 protein levels produced lower numbers of immature mixed multipotent GEMM colonies in semi-solid media. In lineage-promoting culture conditions, cells with reduced BRD9 levels failed to differentiate into the megakaryocytic lineage and showed delayed differentiation into erythroid cells but enhanced terminal myeloid differentiation. HSPCs with BRD9 knock down (KD) had reduced long-term multilineage engraftment in a xenotransplantation assay. An increased number of downregulated genes in RNAseq analysis after BRD9 KD coupled with a gain in chromatin accessibility at the promoters of several repressive transcription factors (TF) suggest that BRD9 functions in the maintenance of active transcription during HSC differentiation. In particular, the hematopoietic master regulator GATA1 was identified as one of the core TFs regulating the gene networks modulated by BRD9 loss in HSPCs. BRD9 inhibition reduced a GATA1-luciferase reporter signal, further suggesting a role for BRD9 in regulating GATA1 activity. BRD9 is therefore an additional example of epigenetic regulation of human hematopoiesis.

7.
Leukemia ; 36(1): 210-220, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34326465

RESUMO

Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell's intracellular degradation machinery, while sparing non-mutated JAK2. We employed a chemical genetics screen, followed by extensive selectivity profiling and genetic studies, to identify the deubiquitinase (DUB), JOSD1, as a novel regulator of mutant JAK2. JOSD1 interacts with and stabilizes JAK2-V617F, and inactivation of the DUB leads to JAK2-V617F protein degradation by increasing its ubiquitination levels, thereby shortening its protein half-life. Moreover, targeting of JOSD1 leads to the death of JAK2-V617F-positive primary acute myeloid leukemia (AML) cells. These studies provide a novel therapeutic approach to achieving selective targeting of mutated JAK2 signaling in MPN.


Assuntos
Enzimas Desubiquitinantes/antagonistas & inibidores , Janus Quinase 2/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Idoso , Idoso de 80 Anos ou mais , Apoptose , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Fosforilação , Prognóstico , Células Tumorais Cultivadas
8.
Leukemia ; 36(4): 1048-1057, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35034955

RESUMO

Activating mutations in EZH2, the catalytic component of PRC2, promote cell proliferation, tumorigenesis, and metastasis through enzymatic or non-enzymatic activity. The EZH2-Y641 gain-of-function mutation is one of the most significant in diffuse large B-cell lymphoma (DLBCL). Although EZH2 kinase inhibitors, such as EPZ-6438, provide clinical benefit, certain cancer cells are resistant to the enzymatic inhibition of EZH2 because of the inability to functionally target mutant EZH2, or because of cells' dependence on the non-histone methyltransferase activity of EZH2. Consequently, destroying mutant EZH2 protein may be more effective in targeting EZH2 mutant cancers that are dependent on the non-catalytic activity of EZH2. Here, using extensive selectivity profiling, combined with genetic and animal model studies, we identified USP47 as a novel regulator of mutant EZH2. Inhibition of USP47 would be anticipated to block the function of mutated EZH2 through induction of EZH2 degradation by promoting its ubiquitination. Moreover, targeting of USP47 leads to death of mutant EZH2-positive cells in vitro and in vivo. Taken together, we propose targeting USP47 with a small molecule inhibitor as a novel potential therapy for DLBCL and other hematologic malignancies characterized by mutant EZH2 expression.


Assuntos
Neoplasias Hematológicas , Histonas , Animais , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Histonas/metabolismo , Humanos , Metilação , Complexo Repressor Polycomb 2/genética
9.
Leuk Lymphoma ; 62(10): 2457-2465, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33993837

RESUMO

Chronic myeloid leukemia (CML), acute myeloid leukemia (AML), and chronic lymphocytic leukemia (CLL) are hematological malignancies that remain incurable despite novel treatments. In order to improve current treatments and clinical efficacy, there remains a need for more complex in vitro models that mimic the intricate human leukemic microenvironment. This study aimed to use 3D tissue engineered plasma cultures (3DTEPC) derived from CML, AML and CLL patients to promote proliferation of leukemic cells for use as a drug screening tool for treatment. 3DTEPC supported the growth of primary CML, AML and CLL cells and also induced significantly more drug resistance in CML, AML and CLL cell lines compared to 2D. The 3DTEPC created a more physiologically relevant environment for leukemia cell proliferation, provided a reliable model for growing leukemia patient samples, and serves as a relevant tool for drug screening and personalized medicine.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Proliferação de Células , Resistência a Medicamentos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Microambiente Tumoral
10.
Cancers (Basel) ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374980

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive cancer defined by loss-of-function mutations with few therapeutic options. We examined the contribution of the transcription factor Signal transducer and activator of transcription 3 (STAT3) to cell growth and gene expression in preclinical models of MPM. STAT3 is activated in a variety of tumors and is thought to be required for the maintenance of cancer stem cells. Targeting STAT3 using specific small hairpin RNAs (shRNAs) or with the pharmacologic inhibitors atovaquone or pyrimethamine efficiently reduced cell growth in established cell lines and primary-derived lines while showing minimal effects in nontransformed LP9 mesothelial cells. Moreover, atovaquone significantly reduced viability and tumor growth in microfluidic cultures of primary MPM as well as in an in vivo xenotransplant model. Biological changes were linked to modulation of gene expression associated with STAT3 signaling, including cell cycle progression and altered p53 response. Reflecting the role of STAT3 in inducing localized immune suppression, using both atovaquone and pyrimethamine resulted in the modulation of immunoregulatory genes predicted to enhance an immune response, including upregulation of ICOSLG (Inducible T-Cell Costimulator Ligand or B7H2). Thus, our data strongly support a role for STAT3 inhibitors as anti-MPM therapeutics.

11.
Sci Rep ; 10(1): 5324, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210275

RESUMO

Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific protein substrates in order to alter their degradation rate and sub-cellular localization. USP7 has been proposed as a therapeutic target in several cancers because it has many reported substrates with a role in cancer progression, including FOXO4, MDM2, N-Myc, and PTEN. The multi-substrate nature of USP7, combined with the modest potency and selectivity of early generation USP7 inhibitors, has presented a challenge in defining predictors of response to USP7 and potential patient populations that would benefit most from USP7-targeted drugs. Here, we describe the structure-guided development of XL177A, which irreversibly inhibits USP7 with sub-nM potency and selectivity across the human proteome. Evaluation of the cellular effects of XL177A reveals that selective USP7 inhibition suppresses cancer cell growth predominantly through a p53-dependent mechanism: XL177A specifically upregulates p53 transcriptional targets transcriptome-wide, hotspot mutations in TP53 but not any other genes predict response to XL177A across a panel of ~500 cancer cell lines, and TP53 knockout rescues XL177A-mediated growth suppression of TP53 wild-type (WT) cells. Together, these findings suggest TP53 mutational status as a biomarker for response to USP7 inhibition. We find that Ewing sarcoma and malignant rhabdoid tumor (MRT), two pediatric cancers that are sensitive to other p53-dependent cytotoxic drugs, also display increased sensitivity to XL177A.


Assuntos
Inibidores de Proteases/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Inibidores de Proteases/química , Peptidase 7 Específica de Ubiquitina/química , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
12.
J Med Chem ; 62(2): 875-892, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30565931

RESUMO

Most of the current FMS-like tyrosine kinase 3 (FLT3) inhibitors lack selectivity between FLT3 kinase and cKIT kinase as well as the FLT3 wt and internal tandem duplication (ITD) mutants. We report a new compound 27, which displays GI50 values of 30-80 nM against different ITD mutants and achieves selectivity over both FLT3 wt (8-fold) and cKIT kinase in the transformed BaF3 cells (>300-fold). 27 potently inhibits the proliferation of the FLT3-ITD-positive acute myeloid leukemia cancer lines through suppression of the phosphorylation of FLT3 kinase and downstream signaling pathways, induction of apoptosis, and arresting the cell cycle into the G0/G1 phase. 27 also displays potent antiproliferative effect against FLT3-ITD-positive patient primary cells, whereas it does not apparently affect FLT3 wt primary cells. In addition, it also exhibits a good therapeutic window to PBMC compared to PKC412. In the in vivo studies, 27 demonstrates favorable PK profiles and suppresses the tumor growth in the MV4-11 cell inoculated mouse xenograft model.


Assuntos
Acetamidas/química , Inibidores de Proteínas Quinases/química , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Nus , Simulação de Dinâmica Molecular , Mutagênese , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
13.
Cell Chem Biol ; 25(1): 88-99.e6, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29129717

RESUMO

Heterobifunctional molecules that recruit E3 ubiquitin ligases, such as cereblon, for targeted protein degradation represent an emerging pharmacological strategy. A major unanswered question is how generally applicable this strategy is to all protein targets. In this study, we designed a multi-kinase degrader by conjugating a highly promiscuous kinase inhibitor with a cereblon-binding ligand, and used quantitative proteomics to discover 28 kinases, including BTK, PTK2, PTK2B, FLT3, AURKA, AURKB, TEC, ULK1, ITK, and nine members of the CDK family, as degradable. This set of kinases is only a fraction of the intracellular targets bound by the degrader, demonstrating that successful degradation requires more than target engagement. The results guided us to develop selective degraders for FLT3 and BTK, with potentials to improve disease treatment. Together, this study demonstrates an efficient approach to triage a gene family of interest to identify readily degradable targets for further studies and pre-clinical developments.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Humanos , Inibidores de Proteínas Quinases/química , Proteólise , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
14.
Oncotarget ; 8(40): 67639-67650, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978059

RESUMO

Acute myeloid leukemia (AML) cells are highly dependent on glycolytic pathways to generate metabolic energy and support cell growth, hinting at specific, targetable vulnerabilities as potential novel targets for drug development. Elevated levels of NADPH, a central metabolic factor involved in redox reactions, are common in myeloid leukemia cells, but the significance or biochemical basis underlying this increase is unknown. Using a small molecule analog that efficiently inhibits NADPH-producing enzymes, we found that AML cells require NADPH homeostasis for cell growth. We also found that inhibiting NADPH production through knockdown of 6-phosphogluconate dehydrogenase (6PGD) within the pentose phosphate pathway was sufficient to reduce cell growth and lactate production, a measure of metabolic reprogramming. Further, inhibition of 6PGD activity reduced NADH levels and enzymatic activity of the oxidized NADH-dependent sirtuin-1. Targeting 6PGD and NADPH production was sufficient to block growth of AML cell lines resistant to the chemotherapeutics daunorubicin and cytarabine. Importantly, stromal cell-mediated resistance to targeted inhibition of oncogenic FLT3 kinase activity by quizartinib was circumvented by 6PGD knockdown. Overall, these data suggest that the dependency of AML cells on NADPH to permit increased glycolytic flux creates a potential vulnerability of possible therapeutic benefit, since much of the enhanced production of NADPH is dependent on the activity of a single enzyme, 6PGD.

15.
Oncotarget ; 8(66): 109973-109984, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29299123

RESUMO

Resistance to targeted tyrosine kinase inhibitors (TKI) remains a challenge for the treatment of myeloid leukemias. Following treatment with TKIs, the bone marrow microenvironment has been found to harbor a small pool of surviving leukemic CD34+ progenitor cells. The long-term survival of these leukemic cells has been attributed, at least in part, to the protective effects of bone marrow stroma. We found that the NOX-A12 'Spiegelmer', an L-enantiomeric RNA oligonucleotide that inhibits SDF-1α, showed in vitro and in vivo activity against BCR-ABL- and FLT3-ITD-dependent leukemia cells. NOX-A12 was sufficient to suppress SDF-1-induced migration in vitro. The combination of NOX-A12 with TKIs reduced cell migration in the same in vitro model of SDF-1-induced chemotaxis to a greater extent than either drug alone, suggesting positive cooperativity as a result of the SDF-1 blocking function of NOX-A12 and cytotoxicity resulting from targeted oncogenic kinase inhibition. These results are consistent with our in vivo findings using a functional pre-clinical mouse model of chronic myeloid leukemia (CML), whereby we demonstrated the ability of NOX-A12, combined with the ABL kinase inhibitor, nilotinib, to reduce the leukemia burden in mice to a greater extent than either agent alone. Overall, the data support the idea of using SDF-1 inhibition in combination with targeted kinase inhibition to override drug resistance in oncogene-driven leukemia to significantly diminish or eradicate residual leukemic disease.

16.
Cell Chem Biol ; 24(12): 1490-1500.e11, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29056421

RESUMO

Deubiquitinating enzymes (DUBs) have garnered significant attention as drug targets in the last 5-10 years. The excitement stems in large part from the powerful ability of DUB inhibitors to promote degradation of oncogenic proteins, especially proteins that are challenging to directly target but which are stabilized by DUB family members. Highly optimized and well-characterized DUB inhibitors have thus become highly sought after tools. Most reported DUB inhibitors, however, are polypharmacological agents possessing weak (micromolar) potency toward their primary target, limiting their utility in target validation and mechanism studies. Due to a lack of high-resolution DUB⋅small-molecule ligand complex structures, no structure-guided optimization efforts have been reported for a mammalian DUB. Here, we report a small-molecule⋅ubiquitin-specific protease (USP) family DUB co-structure and rapid design of potent and selective inhibitors of USP7 guided by the structure. Interestingly, the compounds are non-covalent active-site inhibitors.


Assuntos
Inibidores de Proteases/farmacologia , Tiofenos/farmacologia , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Domínio Catalítico , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade , Especificidade por Substrato , Tiofenos/química , Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo
17.
Oncotarget ; 8(32): 52026-52044, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881711

RESUMO

Oncogenic FLT3 kinase is a clinically validated target in acute myeloid leukemia (AML), and both multi-targeted and selective FLT3 inhibitors have been developed. Spleen tyrosine kinase (SYK) has been shown to be activated and increased in FLT3-ITD-positive AML patients, and has further been shown to be critical for transformation and maintenance of the leukemic clone in these patients. Further, over-expression of constitutively activated SYK causes resistance to highly selective FLT3 tyrosine kinase inhibitors (TKI). Up to now, the activity of the multi-targeted FLT3 inhibitor, midostaurin, against cells expressing activated SYK has not been explored in the context of leukemia, although SYK has been identified as a target of midostaurin in systemic mastocytosis. We compared the ability of midostaurin to inhibit activated SYK in mutant FLT3-positive AML cells with that of inhibitors displaying dual SYK/FLT3 inhibition, targeted SYK inhibition, and targeted FLT3 inhibition. Our findings suggest that dual FLT3/SYK inhibitors and FLT3-targeted drugs potently kill oncogenic FLT3-transformed cells, while SYK-targeted small molecule inhibition displays minimal activity. However, midostaurin and other dual FLT3/SYK inhibitors display superior anti-proliferative activity when compared to targeted FLT3 inhibitors, such as crenolanib and quizartinib, against cells co-expressing FLT3-ITD and constitutively activated SYK-TEL. Interestingly, additional SYK suppression potentiated the effects of dual FLT3/SYK inhibitors and targeted FLT3 inhibitors against FLT3-ITD-driven leukemia, both in the absence and presence of activated SYK. Taken together, our findings have important implications for the design of drug combination studies in mutant FLT3-positive patients and for the design of future generations of FLT3 inhibitors.

18.
Eur J Med Chem ; 137: 545-557, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28628824

RESUMO

Through a structure-based drug design approach, a tricyclic benzonaphthyridinone pharmacophore was used as a starting point for carrying out detailed medicinal structure-activity relationhip (SAR) studies geared toward characterization of a panel of proposed BTK inhibitors, including 6 (QL-X-138), 7 (BMX-IN-1) and 8 (QL47). These studies led to the discovery of the novel potent irreversible BTK inhibitor, compound 18 (CHMFL-BTK-11). Kinetic analysis of compound 18 revealed an irreversible binding efficacy (kinact/Ki) of 0.01 µM-1s-1. Compound 18 potently inhibited BTK kinase Y223 auto-phosphorylation (EC50 < 100 nM), arrested cell cycle in G0/G1 phase, and induced apoptosis in Ramos, MOLM13 and Pfeiffer cells. We believe these features would make 18 a good pharmacological tool for studying BTK-related pathologies.


Assuntos
Antineoplásicos/farmacologia , Naftiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Naftiridinas/síntese química , Naftiridinas/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Blood Sci ; 3(4): 151-153, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35402847
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA