Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 23(1): e13269, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975882

RESUMO

Endogenous carbohydrates released from the intestinal mucus represent a constant source of nutrients to the intestinal microbiota. Mucus-derived carbohydrates can also be used as building blocks in the biosynthesis of bacterial cell wall components, thereby influencing host mucosal immunity. To assess the uptake of endogenous carbohydrates by gut microbes in healthy mice and during intestinal inflammation, we applied azido-monosaccharides that can be tracked on bacterial cell walls after conjugation with fluorophores. In interleukin-10 deficient mice, changes in the gut microbiota were accompanied by decreased carbohydrate hydrolase activities and increased lumenal concentrations of host glycan-derived monosaccharides. Tracking of the monosaccharide N-azidoacetylglucosamine (GlcNAz) in caecum bacteria revealed a preferential incorporation of this carbohydrate by Xanthomonadaceae in healthy mice and by Bacteroidaceae in interleukin-10 deficient mice. These GlcNAz-positive Bacteroidaceae fractions mainly belonged to the species B. acidifaciens and B. vulgatus. Growth of Bacteroides species in the presence of specific monosaccharides changed their stimulatory activity toward CD11c+ dendritic cells. Expression of activation markers and cytokine production was highest after stimulation of dendritic cells with B. vulgatus. The variable incorporation of monosaccharides by related Bacteroides species underline the necessity to investigate intestinal bacteria down to the species level when addressing microbiota-host interactions.


Assuntos
Células Dendríticas/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Monossacarídeos/metabolismo , Polissacarídeos/metabolismo , Animais , Bacteroides/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Interações entre Hospedeiro e Microrganismos , Hidrolases/metabolismo , Imunidade nas Mucosas , Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Xanthomonadaceae/metabolismo
2.
Lipids Health Dis ; 12: 89, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23767972

RESUMO

BACKGROUND: The fatty acid mixture of human milk is ideal for the newborn but little is known about its composition in the first few weeks of lactation. Of special interest are the levels of long-chain PUFAs (LCPUFAs), since these are essential for the newborn's development. Additionally, the LCPUFAs arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are precursors for lipid mediators which regulate inflammation. METHODS: We determined the composition of 94 human milk samples from 30 mothers over the first month of lactation for fatty acids using GC-MS and quantified lipid mediators using HPLC-MS/MS. RESULTS: Over the four weeks period, DHA levels decreased, while levels of γC18:3 and αC18:3 steadily increased. Intriguingly, we found high concentrations of lipid mediators and their hydroxy fatty acid precursors in human milk, including pro-inflammatory leukotriene B4 (LTB4) and anti-inflammatory and pro-resolving lipoxin A4 (LXA4), resolvin D1 (RvD1) and resolvin E1 (RvE1). Lipid mediator levels were stable with the exception of two direct precursors. CONCLUSIONS: Elevated levels of DHA right after birth might represent higher requirements of the newborn and the high content of anti-inflammatory and pro-resolving lipid mediators and their precursors may indicate their role in neonatal immunity and may be one of the reasons for the advantage of human milk over infant formula.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Lactação/metabolismo , Metabolismo dos Lipídeos , Lipoxinas/biossíntese , Leite Humano/metabolismo , Eicosanoides/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Inflamação/metabolismo , Inflamação/patologia , Leite Humano/química , Estados Unidos
3.
Nutrients ; 14(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36558432

RESUMO

Notwithstanding mass vaccination against specific SARS-CoV-2 variants, there is still a demand for complementary nutritional intervention strategies to fight COVID-19. The bovine milk protein lactoferrin (LF) has attracted interest of nutraceutical, food and dairy industries for its numerous properties-ranging from anti-viral and anti-microbial to immunological-making it a potential functional ingredient in a wide variety of food applications to maintain health. Importantly, bovine LF was found to exert anti-viral activities against several types of viruses, including certain SARS-CoV-2 variants. LF's potential effect on COVID-19 patients has seen a rapid increase of in vitro and in vivo studies published, resulting in a model on how LF might play a role during different phases of SARS-CoV-2 infection. Aim of this narrative review is two-fold: (1) to highlight the most relevant findings concerning LF's anti-viral, anti-microbial, iron-binding, immunomodulatory, microbiota-modulatory and intestinal barrier properties that support health of the two most affected organs in COVID-19 patients (lungs and gut), and (2) to explore the possible underlying mechanisms governing its mode of action. Thanks to its potential effects on health, bovine LF can be considered a good candidate for nutritional interventions counteracting SARS-CoV-2 infection and related COVID-19 pathogenesis.


Assuntos
COVID-19 , Animais , Humanos , Antivirais/uso terapêutico , Lactoferrina/farmacologia , SARS-CoV-2/metabolismo , Bovinos
4.
Nutrients ; 13(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209241

RESUMO

Human milk oligosaccharides (HMOs) are important functional biomolecules in human breast milk. Understanding the factors influencing differences in HMO composition and changes in their concentration over lactation can help to design feeding strategies that are well-adapted to infant's needs. This review summarises the total and individual concentration of HMOs from data published from 1999 to 2019. Studies show that the HMO concentrations are highest in colostrum (average 9-22 g/L), followed by slightly lower concentrations in transitional milk (average 8-19 g/L), with a gradual decline in mature milk as lactation progresses, from 6-15 g/L in breast milk collected within one month of birth, to 4-6 g/L after 6 months. Significant differences in HMO composition have been described between countries. Different HMOs were shown to be predominant over the course of lactation, e.g., 3-fucosyllactose increased over lactation, whereas 2'-fucosyllactose decreased. Recent clinical studies on infant formula supplemented with 2'-fucosyllactose in combination with other oligosaccharides showed its limited beneficial effect on infant health.


Assuntos
Saúde , Lactação/fisiologia , Leite Humano/química , Oligossacarídeos/análise , Feminino , Microbioma Gastrointestinal , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA