Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plant Cell ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686825

RESUMO

The subgenus Tillandsia (Bromeliaceae) belongs to one of the fastest radiating clades in the plant kingdom and is characterised by the repeated evolution of Crassulacean acid metabolism (CAM). Despite its complex genetic basis, this water-conserving trait has evolved independently across many plant families and is regarded as a key innovation trait and driver of ecological diversification in Bromeliaceae. By producing high-quality genome assemblies of a Tillandsia species pair displaying divergent photosynthetic phenotypes, and combining genome-wide investigations of synteny, transposable element (TE) dynamics, sequence evolution, gene family evolution and temporal differential expression, we were able to pinpoint the genomic drivers of CAM evolution in Tillandsia. Several large-scale rearrangements associated with karyotype changes between the two genomes and a highly dynamic TE landscape shaped the genomes of Tillandsia. However, our analyses show that rewiring of photosynthetic metabolism is mainly obtained through regulatory evolution rather than coding sequence evolution, as CAM-related genes are differentially expressed across a 24-hour cycle between the two species but are not candidates of positive selection. Gene orthology analyses reveal that CAM-related gene families manifesting differential expression underwent accelerated gene family expansion in the constitutive CAM species, further supporting the view of gene family evolution as a driver of CAM evolution.

2.
Mol Biol Evol ; 39(8)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35904928

RESUMO

To provide insights into the fate of transposable elements (TEs) across timescales in a post-polyploidization context, we comparatively investigate five sibling Dactylorhiza allotetraploids (Orchidaceae) formed independently and sequentially between 500 and 100K generations ago by unidirectional hybridization between diploids D. fuchsii and D. incarnata. Our results first reveal that the paternal D. incarnata genome shows a marked increased content of LTR retrotransposons compared to the maternal species, reflected in its larger genome size and consistent with a previously hypothesized bottleneck. With regard to the allopolyploids, in the youngest D. purpurella both genome size and TE composition appear to be largely additive with respect to parents, whereas for polyploids of intermediate ages we uncover rampant genome expansion on a magnitude of multiple entire genomes of some plants such as Arabidopsis. The oldest allopolyploids in the series are not larger than the intermediate ones. A putative tandem repeat, potentially derived from a non-autonomous miniature inverted-repeat TE (MITE) drives much of the genome dynamics in the allopolyploids. The highly dynamic MITE-like element is found in higher proportions in the maternal diploid, D. fuchsii, but is observed to increase in copy number in both subgenomes of the allopolyploids. Altogether, the fate of repeats appears strongly regulated and therefore predictable across multiple independent allopolyploidization events in this system. Apart from the MITE-like element, we consistently document a mild genomic shock following the allopolyploidizations investigated here, which may be linked to their relatively large genome sizes, possibly associated with strong selection against further genome expansions.


Assuntos
Orchidaceae , Irmãos , Elementos de DNA Transponíveis/genética , Diploide , Genoma de Planta , Humanos , Orchidaceae/genética , Poliploidia , Áreas Alagadas
3.
BMC Plant Biol ; 23(1): 485, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817118

RESUMO

BACKGROUND: Chromosome number and genome size changes via dysploidy and polyploidy accompany plant diversification and speciation. Such changes often impact also morphological characters. An excellent system to address the questions of how extensive and structured chromosomal changes within one species complex affect the phenotype is the monocot species complex of Barnardia japonica. This taxon contains two well established and distinct diploid cytotypes differing in base chromosome numbers (AA: x = 8, BB: x = 9) and their allopolyploid derivatives on several ploidy levels (from 3x to 6x). This extensive and structured genomic variation, however, is not mirrored by gross morphological differentiation. RESULTS: The current study aims to analyze the correlations between the changes of chromosome numbers and genome sizes with palynological and leaf micromorphological characters in diploids and selected allopolyploids of the B. japonica complex. The chromosome numbers varied from 2n = 16 and 18 (2n = 25 with the presence of supernumerary B chromosomes), and from 2n = 26 to 51 in polyploids on four different ploidy levels (3x, 4x, 5x, and 6x). Despite additive chromosome numbers compared to diploid parental cytotypes, all polyploid cytotypes have experienced genome downsizing. Analyses of leaf micromorphological characters did not reveal any diagnostic traits that could be specifically assigned to individual cytotypes. The variation of pollen grain sizes correlated positively with ploidy levels. CONCLUSIONS: This study clearly demonstrates that karyotype and genome size differentiation does not have to be correlated with morphological differentiation of cytotypes.


Assuntos
Asparagaceae , Asparagaceae/genética , Cromossomos de Plantas/genética , Poliploidia , Ploidias , Diploide , Genoma de Planta
4.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35409003

RESUMO

Although Crepis was the first model plant group in which chromosomal changes were considered to play an important role in speciation, their chromosome structure and evolution have been barely investigated using molecular cytogenetic methods. The aim of the study was to provide a better understanding of the patterns and directions of Crepis chromosome evolution, using comparative analyses of rDNA loci number and localisation. The chromosome base number and chromosomal organisation of 5S and 35S rDNA loci were analysed in the phylogenetic background for 39 species of Crepis, which represent the evolutionary lineages of Crepis sensu stricto and Lagoseris, including Lapsana communis. The phylogenetic relationships among all the species were inferred from nrITS and newly obtained 5S rDNA NTS sequences. Despite high variations in rDNA loci chromosomal organisation, most species had a chromosome with both rDNA loci within the same (usually short) chromosomal arm. The comparative analyses revealed several independent rDNA loci number gains and loci repositioning that accompanied diversification and speciation in Crepis. Some of the changes in rDNA loci patterns were reconstructed for the same evolutionary lineages as descending dysploidy.


Assuntos
Crepis , Cromossomos de Plantas/genética , Crepis/genética , Análise Citogenética , DNA Ribossômico/genética , Evolução Molecular , Filogenia
5.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142840

RESUMO

The Iris series Chinenses in Korea comprises four species (I. minutoaurea, I. odaesanensis, I. koreana, and I. rossii), and the group includes some endangered species, owing to their high ornamental, economic, and conservation values. Among them, the putative allotetraploid, Iris koreana (2n = 4x = 50), is hypothesized to have originated from the hybridization of the diploids I. minutoaurea (2n = 2x = 22) and I. odaesanensis (2n = 2x = 28) based on morphological characters, chromosome numbers, and genome size additivity. Despite extensive morphological and molecular phylogenetical studies on the genus Iris, little is known about Korean irises in terms of their complete chloroplast (cp) genomes and molecular cytogenetics that involve rDNA loci evolution based on fluorescence in situ hybridization (FISH). This study reports comparative analyses of the karyotypes of the three Iris species (I. koreana, I. odaesanensis, and I. minutoaurea), with an emphasis on the 5S and 35S rDNA loci number and localization using FISH together with the genome size and chromosome number. Moreover, the cp genomes of the same individuals were sequenced and assembled for comparative analysis. The rDNA loci numbers, which were localized consistently at the same position in all species, and the chromosome numbers and genome size values of tetraploid Iris koreana (four 5S and 35S loci; 2n = 50; 1C = 7.35 pg) were additively compared to its putative diploid progenitors, I. minutoaurea (two 5S and 35S loci; 2n = 22; 1C = 3.71 pg) and I. odaesanensis (two 5S and 35S loci; 2n = 28; 1C = 3.68 pg). The chloroplast genomes were 152,259-155,145 bp in length, and exhibited a conserved quadripartite structure. The Iris cp genomes were highly conserved and similar to other Iridaceae cp genomes. Nucleotide diversity analysis indicated that all three species had similar levels of genetic variation, but the cp genomes of I. koreana and I. minutoaurea were more similar to each other than to I. odaesanensis. Positive selection was inferred for psbK and ycf2 genes of the three Iris species. Phylogenetic analyses consistently recovered I. odaesanensis as a sister to a clade containing I. koreana and I. minutoaurea. Although the phylogenetic relationship, rDNA loci number, and localization, together with the genome size and chromosome number of the three species, allowed for the inference of I. minutoaurea as a putative maternal taxon and I. odaesanensis as a paternal taxon, further analyses involving species-specific molecular cytogenetic markers and genomic in situ hybridization are required to interpret the mechanisms involved in the origin of the chromosomal variation in Iris series Chinenses. This study contributes towards the genomic and chromosomal evolution of the genus Iris.


Assuntos
Genoma de Cloroplastos , Iridaceae , Gênero Iris , DNA Ribossômico/genética , Diploide , Hibridização in Situ Fluorescente , Gênero Iris/genética , Cariótipo , Nucleotídeos , Filogenia
6.
Syst Biol ; 67(6): 1010-1024, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562303

RESUMO

Allopolyploidy has played an important role in the evolution of the flowering plants. Genome mergers are often accompanied by significant and rapid alterations of genome size and structure via chromosomal rearrangements and altered dynamics of tandem and dispersed repetitive DNA families. Recent developments in sequencing technologies and bioinformatic methods allow for a comprehensive investigation of the repetitive component of plant genomes. Interpretation of evolutionary dynamics following allopolyploidization requires both the knowledge of parentage and the age of origin of an allopolyploid. Whereas parentage is typically inferred from cytogenetic and phylogenetic data, age inference is hampered by the reticulate nature of the phylogenetic relationships. Treating subgenomes of allopolyploids as if they belonged to different species (i.e., no recombination among subgenomes) and applying cross-bracing (i.e., putting a constraint on the age difference of nodes pertaining to the same event), we can infer the age of allopolyploids within the framework of the multispecies coalescent within BEAST2. Together with a comprehensive characterization of the repetitive DNA fraction using the RepeatExplorer pipeline, we apply the dating approach in a group of closely related allopolyploids and their progenitor species in the plant genus Melampodium (Asteraceae). We dated the origin of both the allotetraploid, Melampodium strigosum, and its two allohexaploid derivatives, Melampodium pringlei and Melampodium sericeum, which share both parentage and the direction of the cross, to the Pleistocene ($<$1.4 Ma). Thus, Pleistocene climatic fluctuations may have triggered formation of allopolyploids possibly in short intervals, contributing to difficulties in inferring the precise temporal order of allopolyploid species divergence of M. sericeum and M. pringlei. The relatively recent origin of the allopolyploids likely played a role in the near-absence of major changes in the repetitive fraction of the polyploids' genomes. The repetitive elements most affected by the postpolyploidization changes represented retrotransposons of the Ty1-copia lineage Maximus and, to a lesser extent, also Athila elements of Ty3-gypsy family.


Assuntos
Asteraceae/classificação , Asteraceae/genética , Evolução Molecular , Genoma de Planta/genética , DNA de Plantas/genética , Filogenia , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética
7.
Genome ; 61(9): 643-652, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30067084

RESUMO

The abundance and chromosomal organization of two repetitive sequences named 12-13P and 18-24J were analyzed in 24 diploid and nine polyploid species of Chenopodium s.l., with special attention to Chenopodium s.s. Both sequences were predominantly present in species of Chenopodium s.s.; however, differences in the amplification levels were observed among the species. The 12-13P repeat was highly amplified in all of the analyzed Eurasian species, whereas the American diploids showed a marked variation in the amplification levels. The 12-13P repeat contains a tandemly arranged 40 bp minisatellite element forming a large proportion of the genome of Chenopodium (up to 3.5%). FISH revealed its localization to the pericentromeric regions of the chromosomes. The chromosomal distribution of 12-13P delivered additional chromosomal marker for B-genome diploids. The 18-24J repeat showed a dispersed organization in all of the chromosomes of the analyzed diploid species and the Eurasian tetraploids. In the American allotetraploids (C. quinoa, C. berlandieri) and Eurasian allohexaploids (e.g., C. album) very intense hybridization signals of 18-24J were observed only on 18 chromosomes that belong to the B subgenome of these polyploids. Combined cytogenetic and molecular analyses suggests that reorganization of these two repeats accompanied the diversification and speciation of diploid (especially A genome) and polyploid species of Chenopodium s.s.


Assuntos
Amaranthaceae/genética , Evolução Molecular , Amplificação de Genes , Genoma de Planta , Repetições Minissatélites , Ploidias
8.
New Phytol ; 210(2): 669-79, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26643365

RESUMO

Supernumerary B chromosomes (Bs) are genomic parasitic components, originating from the A complement via chromosomal rearrangements, which follow their own evolutionary trajectories. They often contain repetitive DNAs, some shared with regular chromosomes and some newly evolved. Genomic composition, origin and evolution of Bs have been analysed in the chromosomally variable Prospero autumnale complex. Two rDNAs and a satellite DNA (PaB6) from regular chromosomes were mapped to Bs of 26 plants from three diploid cytotypes, their hybrids and polyploid derivatives. In homoploid diploid hybrids, genomic in situ hybridization (GISH) allowed B painting with the parental DNAs. Bs were structurally variable and highly enriched in 5S rDNA and satDNA PaB6, and rarely in 35S rDNA. Eleven combinations of rDNA and PaB6 localization were observed. The quantities of PaB6 in Bs and regular chromosomes were not correlated, suggesting amplification mechanisms other than recombination. PaB6 and 5S rDNA amounts increased with increasing ploidy level. GISH revealed two independent origins of Bs. The structural variation, repeat content, repeat-type fluctuations and differing genomic affinities of Bs in different cytotypes suggest that they represent young proto-B chromosomes. Bs in P. autumnale probably form recurrently as by-products of the extensive genome restructuring within this chromosomally variable species complex.


Assuntos
Asparagaceae/genética , Evolução Biológica , Cromossomos de Plantas/genética , Genoma de Planta , Polimorfismo Genético , DNA Ribossômico/genética , DNA Satélite/genética , Diploide , Hibridização in Situ Fluorescente , Meiose/genética , Poliploidia , Sequências de Repetição em Tandem/genética
9.
Mol Phylogenet Evol ; 100: 109-123, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27063253

RESUMO

Most of the cultivated chenopods are polyploids, but their origin and evolutionary history are still poorly understood. Phylogenetic analyses of DNA sequences of four plastid regions, nrITS and nuclear 5S rDNA spacer region (NTS) of two tetraploid chenopods (2n=4x=36), Andean C. quinoa and North American C. berlandieri, and their diploid relatives allowed inferences of their origin. The phylogenetic analyses confirmed allotetraploid origin of both tetraploids involving diploids of two different genomic groups (genomes A and B) and suggested that these two might share very similar parentage. The hypotheses on the origin of the two allopolyploid species were further tested using genomic in situ hybridization (GISH). Several diploid Chenopodium species belonging to the two lineages, genome A and B, suggested by phylogenetic analyses, were tested as putative parental taxa. GISH differentiated two sets of parental chromosomes in both tetraploids and further corroborated their allotetraploid origin. Putative diploid parental taxa have been suggested by GISH for C. quinoa and C. berlandieri. Genome sizes of the analyzed allotetraploids fit nearly perfectly the expected additive values of the putative parental taxa. Directional and uniparental loss of rDNA loci of the maternal A-subgenome was revealed for both C. berlandieri and C. quinoa.


Assuntos
Evolução Biológica , Chenopodium quinoa/genética , Análise Citogenética , Tetraploidia , Sequência de Bases , DNA de Cloroplastos/genética , DNA Espaçador Ribossômico/genética , Diploide , Evolução Molecular , Loci Gênicos , Tamanho do Genoma , Genoma de Planta , Hibridização In Situ , Filogenia
10.
Syst Biol ; 64(1): 112-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25261464

RESUMO

A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.


Assuntos
Genoma/genética , Filogenia , Animais , Análise por Conglomerados , DNA de Plantas/genética , Drosophila/classificação , Drosophila/genética , Genes de Insetos/genética , Magnoliopsida/genética , Sequências Repetitivas de Ácido Nucleico/genética
11.
Oecologia ; 180(2): 439-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26552380

RESUMO

Hybridisation is common in plants and can affect the genetic diversity and ecology of sympatric parental populations. Hybrids may resemble the parental species in their ecology, leading to competition and/or gene introgression; alternatively, they may diverge from the parental phenotypes, possibly leading to the colonisation of new ecological niches and to speciation. Here, we describe inflorescence morphology, ploidy levels, pollinator attractive scents, and pollinator guilds of natural hybrids of Arum italicum and A. maculatum (Araceae) from a site with sympatric parental populations in southern France to determine how these traits affect the hybrid pollination ecology. Hybrids were characterised by inflorescences with a size and a number of flowers more similar to A. italicum than to A. maculatum. In most cases, hybrid stamens were purple, as in A. maculatum, and spadix appendices yellow, as in A. italicum. Hybrid floral scent was closer to that of A. italicum, but shared some compounds with A. maculatum and comprised unique compounds. Also, the pollinator guild of the hybrids was similar to that of A. italicum. Nevertheless, the hybrids attracted a high proportion of individuals of the main pollinator of A. maculatum. We discuss the effects of hybridisation in sympatric parental zones in which hybrids exhibit low levels of reproductive success, the establishment of reproductive barriers between parental species, the role of the composition of floral attractive scents in the differential attraction of pollinators and in the competition between hybrids and their parental species, and the potential of hybridisation to give rise to new independent lineages.


Assuntos
Arum/genética , Flores , Hibridização Genética , Fenótipo , Polinização , Animais , Ecologia , Flores/anatomia & histologia , França , Inflorescência , Insetos , Odorantes , Feromônios , Ploidias , Reprodução , Especificidade da Espécie
12.
BMC Evol Biol ; 15: 140, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26182989

RESUMO

BACKGROUND: Polyploidisation is one of the most important mechanisms in the evolution of angiosperms. As in many other genera, formation of polyploids has significantly contributed to diversification and radiation of Knautia (Caprifoliaceae, Dipsacoideae). Comprehensive studies of fine- and broad-scale patterns of ploidy and genome size (GS) variation are, however, still limited to relatively few genera and little is known about the geographic distribution of ploidy levels within these genera. Here, we explore ploidy and GS variation in Knautia based on a near-complete taxonomic and comprehensive geographic sampling. RESULTS: Genome size is a reliable indicator of ploidy level in Knautia, even if monoploid genome downsizing is observed in the polyploid cytotypes. Twenty-four species studied are diploid, 16 tetraploid and two hexaploid, whereas ten species possess two, and two species possess three ploidy levels. Di- and tetraploids are distributed across most of the distribution area of Knautia, while hexaploids were sampled in the Balkan and Iberian Peninsulas and the Alps. CONCLUSIONS: We show that the frequency of polyploidisation is unevenly distributed in Knautia both in a geographic and phylogenetic context. Monoploid GS varies considerably among three evolutionary lineages (sections) of Knautia, but also within sections Trichera and Tricheroides, as well as within some of the species. Although the exact causes of this variation remain elusive, we demonstrate that monoploid GS increases significantly towards the limits of the genus' distribution.


Assuntos
Caprifoliaceae/genética , Poliploidia , Evolução Biológica , Caprifoliaceae/classificação , Caprifoliaceae/citologia , Cromossomos de Plantas , Tamanho do Genoma , Magnoliopsida/citologia , Magnoliopsida/genética , Filogenia
13.
Cytogenet Genome Res ; 146(4): 325-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26492445

RESUMO

Polyploidy and hybridization play an important role in plant diversification and speciation. The application of genomic in situ hybridization (GISH) allows the identification of parental genomes in hybrids, thus elucidating their origins and allowing for analysis of their genomic evolution. The performance of GISH depends on the similarity of the parental genomes and on the age of hybrids. Here, we present the formamide-free GISH (ff-GISH) protocol applied to diploid and polyploid hybrids of monocots (Prospero, Hyacinthaceae) and dicots (Melampodium, Asteraceae) differing in similarity of the parental genomes and in chromosome and genome sizes. The efficiency of the new protocol is compared to the standard GISH protocol. As a result, ff-GISH allowed efficient labeling and discrimination of the parental chromosome sets in diploid and allopolyploid hybrids in Prospero autumnale species complex. In contrast, the standard GISH protocol failed to differentiate the parental genomes due to high levels of similar repetitive DNA. Likewise, an unambiguous identification of parental genomes in allotetraploid Melampodium nayaritense (Asteraceae) was possible after ff-GISH, whereas the standard GISH hybridization performance was suboptimal. The modified method is simple and non-toxic and allows the discrimination of very similar parental genomes in hybrids. This method lends itself to modifications and improvements and can also be used for FISH.


Assuntos
Asteraceae/genética , Diploide , Genoma de Planta , Hibridização In Situ/métodos , Poliploidia , Formamidas
14.
BMC Plant Biol ; 14: 24, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24418109

RESUMO

BACKGROUND: Reconstruction of the parental origins of cultivated plants from wild relatives, especially after long periods of domestication, is not a trivial task. However, recent advances in molecular phylogenetics, among other approaches, have proved to be very informative in analyses of the origin and evolution of polyploid genomes. An established minor garden crop, triploid onion Allium × cornutum (Clementi ex Visiani, 1842) (2n = 3x = 24), is widespread in southeastern Asia and Europe. Our previous cytogenetic analyses confirmed its highly heterozygous karyotype and indicated its possible complex triparental genome origin. Allium cepa L. and Allium roylei Stearn were suggested as two putative parental species of A. × cornutum, whereas the third parental species remained hitherto unknown. RESULTS: Here we report the phylogenetic analyses of the internal transcribed spacers ITS1-5.8S-ITS2 of 35S rDNA and the non-transcribed spacer (NTS) region of 5S rDNA of A. × cornutum and its relatives of the section Cepa. Both ITS and NTS sequence data revealed intra-individual variation in triploid onion, and these data clustered into the three main clades, each with high sequence homology to one of three other species of section Cepa: A. cepa, A. roylei, and unexpectedly, the wild Asian species Allium pskemense B. Fedtsh. Allium pskemense is therefore inferred to be the third, so far unknown, putative parental species of triploid onion Allium × cornutum. The 35S and 5S rRNA genes were found to be localised on somatic chromosomes of A. × cornutum and its putative parental species by double fluorescent in situ hybridisation (FISH). The localisation of 35S and 5S rDNA in A. × cornutum chromosomes corresponded to their respective positions in the three putative parental species, A. cepa, A. pskemense, and A. roylei. GISH (genomic in situ hybridisation) using DNA of the three putative parental diploids corroborated the results of the phylogenetic study. CONCLUSIONS: The combined molecular, phylogenetic and cytogenetic data obtained in this study provided evidence for a unique triparental origin of triploid onion A. × cornutum with three putative parental species, A. cepa, A. pskemense, and A. roylei.


Assuntos
Cebolas/genética , Filogenia , Triploidia , Allium/classificação , Allium/embriologia , Allium/genética , Cebolas/classificação , Cebolas/embriologia
15.
16.
Ann Bot ; 114(8): 1597-608, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25169019

RESUMO

BACKGROUND AND AIMS: Chromosomal evolution, including numerical and structural changes, is a major force in plant diversification and speciation. This study addresses genomic changes associated with the extensive chromosomal variation of the Mediterranean Prospero autumnale complex (Hyacinthaceae), which includes four diploid cytotypes each with a unique combination of chromosome number (x = 5, 6, 7), rDNA loci and genome size. METHODS: A new satellite repeat PaB6 has previously been identified, and monomers were reconstructed from next-generation sequencing (NGS) data of P. autumnale cytotype B(6)B(6) (2n = 12). Monomers of all other Prospero cytotypes and species were sequenced to check for lineage-specific mutations. Copy number, restriction patterns and methylation levels of PaB6 were analysed using Southern blotting. PaB6 was localized on chromosomes using fluorescence in situ hybridization (FISH). KEY RESULTS: The monomer of PaB6 is 249 bp long, contains several intact and truncated vertebrate-type telomeric repeats and is highly methylated. PaB6 is exceptional because of its high copy number and unprecedented variation among diploid cytotypes, ranging from 10(4) to 10(6) copies per 1C. PaB6 is always located in pericentromeric regions of several to all chromosomes. Additionally, two lineages of cytotype B(7)B(7) (x = 7), possessing either a single or duplicated 5S rDNA locus, differ in PaB6 copy number; the ancestral condition of a single locus is associated with higher PaB6 copy numbers. CONCLUSIONS: Although present in all Prospero species, PaB6 has undergone differential amplification only in chromosomally variable P. autumnale, particularly in cytotypes B(6)B(6) and B(5)B(5). These arose via independent chromosomal fusions from x = 7 to x = 6 and 5, respectively, accompanied by genome size increases. The copy numbers of satellite DNA PaB6 are among the highest in angiosperms, and changes of PaB6 are exceptionally dynamic in this group of closely related cytotypes of a single species. The evolution of the PaB6 copy numbers is discussed, and it is suggested that PaB6 represents a recent and highly dynamic system originating from a small pool of ancestral repeats.


Assuntos
Cromossomos de Plantas/genética , DNA de Plantas/genética , DNA Satélite/genética , Liliaceae/genética , Reação em Cadeia da Polimerase , Sequência de Bases , Variações do Número de Cópias de DNA , Diploide , Evolução Molecular , Genoma de Planta , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA , Telômero/metabolismo
17.
Front Plant Sci ; 15: 1353991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463568

RESUMO

Patterns of genetic variation in crops are the result of multiple processes that have occurred during their domestication and improvement, and are influenced by their wild progenitors that often remain understudied. The locoto chile, Capsicum pubescens, is a crop grown mainly in mid-highlands of South-Central America. This species is not known from the wild and exists only as a cultigen. The evolutionary affinities and exact origin of C. pubescens have still not been elucidated, with hypotheses suggesting its genetic relatedness and origin to two wild putative ancestral Capsicum species from the Central Andes, C. eximium and C. cardenasii. In the current study, RAD-sequencing was applied to obtain genome-wide data for 48 individuals of C. pubescens and its wild allies representing different geographical areas. Bayesian, Maximum Likelihood and coalescent-based analytical approaches were used to reconstruct population genetic patterns and phylogenetic relationships of the studied species. The results revealed that C. pubescens forms a well-defined monotypic lineage closely related to wild C. cardenasii and C. eximium, and also to C. eshbaughii. The primary lineages associated with the diversification under domestication of C. pubescens were also identified. Although direct ancestor-descendant relationship could not be inferred within this group of taxa, hybridization events were detected between C. pubescens and both C. cardenasii and C. eximium. Therefore, although hybrid origin of C. pubescens could not be inferred, gene flow involving its wild siblings was shown to be an important factor contributing to its contemporary genetic diversity. The data allowed for the inference of the center of origin of C. pubescens in central-western Bolivia highlands and for better understanding of the dynamics of its gene pool. The results of this study are essential for germplasm conservation and breeding purposes, and provide excellent basis for further research of the locoto chile and its wild relatives.

18.
BMC Evol Biol ; 13: 136, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23819574

RESUMO

BACKGROUND: Prospero (Hyacinthaceae) provides a unique system to assess the impact of genome rearrangements on plant diversification and evolution. The genus exhibits remarkable chromosomal variation but very little morphological differentiation. Basic numbers of x = 4, 5, 6 and 7, extensive polyploidy, and numerous polymorphic chromosome variants were described, but only three species are commonly recognized: P. obtusifolium, P. hanburyi, and P. autumnale s.l., the latter comprising four diploid cytotypes. The relationship between evolutionary patterns and chromosomal variation in diploids, the basic modules of the extensive cytological diversity, is presented. RESULTS: Evolutionary inferences were derived from fluorescence in situ hybridization (FISH) with 5S and 35S rDNA, genome size estimations, and phylogenetic analyses of internal transcribed spacer (ITS) of 35S rDNA of 49 diploids in the three species and all cytotypes of P. autumnale s.l. All species and cytotypes possess a single 35S rDNA locus, interstitial except in P. hanburyi where it is sub-terminal, and one or two 5S rDNA loci (occasionally a third in P. obtusifolium) at fixed locations. The localization of the two rDNA types is unique for each species and cytotype. Phylogenetic data in the P. autumnale complex enable tracing of the evolution of rDNA loci, genome size, and direction of chromosomal fusions: mixed descending dysploidy of x = 7 to x = 6 and independently to x = 5, rather than successive descending dysploidy, is proposed. CONCLUSIONS: All diploid cytotypes are recovered as well-defined evolutionary lineages. The cytogenetic and phylogenetic approaches have provided excellent phylogenetic markers to infer the direction of chromosomal change in Prospero. Evolution in Prospero, especially in the P. autumnale complex, has been driven by differentiation of an ancestral karyotype largely unaccompanied by morphological change. These new results provide a framework for detailed analyses of various types of chromosomal rearrangements and karyotypic variation in polyploids.


Assuntos
Cromossomos de Plantas/genética , Diploide , Evolução Molecular , Liliaceae/genética , Sequência de Bases , DNA Ribossômico/genética , Variação Genética , Cariótipo , Liliaceae/classificação , Dados de Sequência Molecular , Filogenia
19.
Mol Phylogenet Evol ; 69(3): 634-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23891952

RESUMO

Phyteuma is a chromosomally and ecologically diverse vascular plant genus and constitutes an excellent system for studying both the role of chromosomal change for species diversification and the evolution of high-mountain biota. This kind of research is, however, hampered by the lack of a sound phylogenetic framework exacerbated by the notoriously low predictive power of traditional taxonomy with respect to phylogenetic relationships in Campanulaceae. Based on a comprehensive taxon sampling and analyses of nuclear and plastid sequence and AFLP fingerprint data, Phyteuma is confirmed as a monophyletic group sister to the monotypic Physoplexis, which is in line with their peculiar flower morphologies. Within Phyteuma two clades, largely corresponding to previously recognized sections, are consistently found. The traditional circumscription of taxonomic series is largely rejected. Whereas distinctness of the currently recognized species is mostly corroborated, some interspecific relationships remain ambiguous due to incongruences between nuclear and plastid data. Major forces for diversification and evolution of Phyteuma are descending dysploidy (i.e., a decrease in chromosome base number) as well as allopatric and ecological differentiation within the Alps, the genus' center of species diversity.


Assuntos
Campanulaceae/classificação , Cromossomos de Plantas/genética , Evolução Molecular , Filogenia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Campanulaceae/genética , Núcleo Celular/genética , DNA de Plantas/genética , Cariótipo , Funções Verossimilhança , Modelos Genéticos , Plastídeos/genética , Análise de Sequência de DNA
20.
Ann Bot ; 111(4): 641-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23425783

RESUMO

BACKGROUND AND AIMS: Genome duplication is widely acknowledged as a major force in the evolution of angiosperms, although the incidence of polyploidy in different floras may differ dramatically. The Greater Cape Floristic Region of southern Africa is one of the world's biodiversity hotspots and is considered depauperate in polyploids. To test this assumption, ploidy variation was assessed in a widespread member of the largest geophytic genus in the Cape flora: Oxalis obtusa. METHODS: DNA flow cytometry complemented by confirmatory chromosome counts was used to determine ploidy levels in 355 populations of O. obtusa (1014 individuals) across its entire distribution range. Ecological differentiation among cytotypes was tested by comparing sets of vegetation and climatic variables extracted for each locality. KEY RESULTS: Three majority (2x, 4x, 6x) and three minority (3x, 5x, 8x) cytotypes were detected in situ, in addition to a heptaploid individual originating from a botanical garden. While single-cytotype populations predominate, 12 mixed-ploidy populations were also found. The overall pattern of ploidy level distribution is quite complex, but some ecological segregation was observed. Hexaploids are the most common cytotype and prevail in the Fynbos biome. In contrast, tetraploids dominate in the Succulent Karoo biome. Precipitation parameters were identified as the most important climatic variables associated with cytotype distribution. CONCLUSIONS: Although it would be premature to make generalizations regarding the role of genome duplication in the genesis of hyperdiversity of the Cape flora, the substantial and unexpected ploidy diversity in Oxalis obtusa is unparalleled in comparison with any other cytologically known native Cape plant species. The results suggest that ploidy variation in the Greater Cape Floristic Region may be much greater than currently assumed, which, given the documented role of polyploidy in speciation, has direct implications for radiation hypotheses in this biodiversity hotspot.


Assuntos
Variação Genética , Magnoliopsida/citologia , Magnoliopsida/genética , Ploidias , África Austral , Biodiversidade , Cromossomos de Plantas , Citometria de Fluxo/métodos , Genética Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA