Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Circ Res ; 105(4): 316-25, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19608982

RESUMO

RATIONALE: Pathological cardiac myocyte hypertrophy is thought to be induced by the persistent increases in intracellular Ca(2+) needed to maintain cardiac function when systolic wall stress is increased. Hypertrophic Ca(2+) binds to calmodulin (CaM) and activates the phosphatase calcineurin (Cn) and CaM kinase (CaMK)II. Cn dephosphorylates cytoplasmic NFAT (nuclear factor of activated T cells), inducing its translocation to the nucleus where it activates antiapoptotic and hypertrophic target genes. Cytoplasmic CaMKII regulates Ca(2+) handling proteins but whether or not it is directly involved in hypertrophic and survival signaling is not known. OBJECTIVE: This study explored the hypothesis that cytoplasmic CaMKII reduces NFAT nuclear translocation by inhibiting the phosphatase activity of Cn. METHODS AND RESULTS: Green fluorescent protein-tagged NFATc3 was used to determine the cellular location of NFAT in cultured neonatal rat ventricular myocytes (NRVMs) and adult feline ventricular myocytes. Constitutively active (CaMKII-CA) or dominant negative (CaMKII-DN) mutants of cytoplasmic targeted CaMKII(deltac) were used to activate and inhibit cytoplasmic CaMKII activity. In NRVM CaMKII-DN (48.5+/-3%, P<0.01 versus control) increased, whereas CaMKII-CA decreased (5.9+/-1%, P<0.01 versus control) NFAT nuclear translocation (Control: 12.3+/-1%). Cn inhibitors were used to show that these effects were caused by modulation of Cn activity. Increasing Ca(2+) increased Cn-dependent NFAT translocation (to 71.7+/-7%, P<0.01) and CaMKII-CA reduced this effect (to 17.6+/-4%). CaMKII-CA increased TUNEL and caspase-3 activity (P<0.05). CaMKII directly phosphorylated Cn at Ser197 in CaMKII-CA infected NRVMs and in hypertrophied feline hearts. CONCLUSION: These data show that activation of cytoplasmic CaMKII inhibits NFAT nuclear translocation by phosphorylation and subsequent inhibition of Cn.


Assuntos
Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Núcleo Celular/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transporte Ativo do Núcleo Celular/genética , Animais , Calcineurina/genética , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Calmodulina/genética , Calmodulina/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Caspase 3/genética , Caspase 3/metabolismo , Gatos , Núcleo Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Células K562 , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Fosforilação/genética , Ratos , Ratos Sprague-Dawley
2.
Neuron ; 52(6): 1027-36, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17178405

RESUMO

Hyperpolarization-activated, cyclic-nucleotide-gated (HCN) channels mediate the depolarizing cation current (termed I(h) or I(f)) that initiates spontaneous rhythmic activity in heart and brain. This function critically depends on the reliable opening of HCN channels in the subthreshold voltage-range. Here we show that activation of HCN channels at physiologically relevant voltages requires interaction with phosphoinositides such as phosphatidylinositol-4,5-bisphosphate (PIP(2)). PIP(2) acts as a ligand that allosterically opens HCN channels by shifting voltage-dependent channel activation approximately 20 mV toward depolarized potentials. Allosteric gating by PIP(2) occurs in all HCN subtypes and is independent of the action of cyclic nucleotides. In CNS neurons and cardiomyocytes, enzymatic degradation of phospholipids results in reduced channel activation and slowing of the spontaneous firing rate. These results demonstrate that gating by phospholipids is essential for the pacemaking activity of HCN channels in cardiac and neuronal rhythmogenesis.


Assuntos
Relógios Biológicos/fisiologia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Neurônios/fisiologia , Fosfatidilinositóis/fisiologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Androstadienos/farmacologia , Animais , Relógios Biológicos/efeitos dos fármacos , Encéfalo/citologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Embrião de Mamíferos , Embrião não Mamífero , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mutação/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/efeitos da radiação , Neurônios/efeitos dos fármacos , Oócitos , Técnicas de Patch-Clamp/métodos , Fosfatidilinositol 4,5-Difosfato/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Canais de Potássio , Pirimidinas/farmacologia , Wortmanina , Xenopus
3.
Circ Res ; 92(6): 651-8, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12600875

RESUMO

Depressed contractility is a central feature of the failing human heart and has been attributed to altered [Ca2+]i. This study examined the respective roles of the L-type Ca2+ current (ICa), SR Ca2+ uptake, storage and release, Ca2+ transport via the Na+-Ca2+ exchanger (NCX), and Ca2+ buffering in the altered Ca2+ transients of failing human ventricular myocytes. Electrophysiological techniques were used to measure and control V(m) and measure I(m), respectively, and Fluo-3 was used to measure [Ca2+]i in myocytes from nonfailing (NF) and failing (F) human hearts. Ca2+ transients from F myocytes were significantly smaller and decayed more slowly than those from NF hearts. Ca2+ uptake rates by the SR and the amount of Ca2+ stored in the SR were significantly reduced in F myocytes. There were no significant changes in the rate of Ca2+ removal from F myocytes by the NCX, in the density of NCX current as a function of [Ca2+]i, ICa density, or cellular Ca2+ buffering. However, Ca2+ influx during the late portions of the action potential seems able to elevate [Ca2+]i in F but not in NF myocytes. A reduction in the rate of net Ca2+ uptake by the SR slows the decay of the Ca2+ transient and reduces SR Ca2+ stores. This leads to reduced SR Ca2+ release, which induces additional Ca2+ influx during the plateau phase of the action potential, further slowing the decay of the Ca2+ transient. These changes can explain the defective Ca2+ transients of the failing human ventricular myocyte.


Assuntos
Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/citologia , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Idoso , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/fisiologia , Condutividade Elétrica , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Transporte de Íons , Masculino , Pessoa de Meia-Idade , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Trocador de Sódio e Cálcio/fisiologia
4.
Cardiovasc Res ; 57(4): 974-85, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12650875

RESUMO

UNLABELLED: Prolongation of the Ca2+ transient and action potential (AP) durations are two characteristic changes in myocyte physiology in the failing human heart. The hypothesis of this study is that Ca2+ influx via reverse mode Na+/Ca2+ exchanger (NCX) or via L-type Ca2+ channels directly activates contraction in failing human myocytes while in normal myocytes this Ca2+ is transported into the sarcoplasmic reticulum (SR) to regulate SR Ca2+ stores. METHODS: Myocytes were isolated from failing human (n=6), nonfailing human (n=3) and normal feline hearts (n=9) and whole cell current and voltage clamp techniques were used to evoke and increase the duration of APs (0.5 Hz, 37 degrees C). Cyclopiazonic acid (CPA 10(-6) M), nifedipine (NIF;10(-6) M) and KB-R 7943 (KB-R; 3x10(-6) M) were used to reduce SR Ca2+ uptake, Ca2+ influx via the L-type Ca2+ current and reverse mode NCX, respectively. [Na+)i was changed by dialyzing myocytes with 0, 10 and 20 mM Na(+) pipette solutions. RESULTS: Prolongation of the AP duration caused an immediate prolongation of contraction and Ca2+ transient durations in failing myocytes. The first beat after the prolonged AP was potentiated by 21+/-5 and 27+/-5% in nonfailing human and normal feline myocytes, respectively (P<0.05), but there was no significant effect in failing human myocytes (+5+/-4% vs. steady state). CPA blunted the potentiation of the first beat after AP prolongation in normal feline and nonfailing human myocytes, mimicking the failing phenotype. NIF reduced steady state contraction in feline myocytes but the potentiation of the first beat after AP prolongation was unaltered (21+/-3% vs. base, P<0.05). KB-R reduced basal contractility and abolished the potentiation of the first beat after AP prolongation (2+/-1% vs. steady state). Increasing [Na+]i shortened AP, Ca2+ transient and contraction durations and increased steady state and post AP prolongation contractions. Dialysis with 0 Na+ eliminated these effects. CONCLUSIONS: Ca2+ enters both normal and failing cardiac myocytes during the late portion of the AP plateau via reverse mode NCX. In (normal) myocytes with good SR function, this Ca(2+) influx helps maintain and regulate SR Ca2+ load. In (failing) human myocytes with poor SR function this Ca2+ influx directly contributes to contraction. These studies suggest that the Ca2+ transient of the failing human ventricular myocytes has a higher than normal reliance on Ca2+ influx via the reverse mode of the NCX during the terminal phases of the AP.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Miócitos Cardíacos/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Gatos , Células Cultivadas , Insuficiência Cardíaca/metabolismo , Humanos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Retículo Sarcoplasmático/metabolismo
6.
Cardiol Res Pract ; 2009: 802373, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20224636

RESUMO

Objective. The transverse-axial tubule system (TATS) of cardiomyocytes allows a spatially coordinated conversion of electrical excitation into an intracellular Ca(2+) signal and consequently contraction. Previous reports have indicated alterations of structure and/or volume of the TATS in cardiac hypertrophy and failure, suggesting a contribution to the impairment of excitation contraction coupling. To test whether structural alterations are present in human heart failure, the TATS was visualized in myocytes from failing and non-failing human hearts. Methods and Results. In freshly isolated myocytes, the plasmalemmal membranes were labeled with Di-8-ANEPPS and imaged using two-photon excitation at 780 nm. Optical sections were taken every 300 nm through the cells. After deconvolution, the TATS was determined within the 3D data sets, revealing no significant difference in normalized surface area or volume. To rule out possible inhomogeneity in the arrangement of the TATS, Euclidian distance maps were plotted for every section, allowing to measure the closest distance between any cytosolic and any membrane point. There was a trend towards greater spacing in cells from failing hearts, without statistical significance. Conclusion. Only small changes, but no significant changes in the geometrical dimensions of the TATS were observed in cardiomyocytes from failing compared to non-failing human myocardium.

7.
Age (Dordr) ; 29(4): 205-17, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19424839

RESUMO

"Physiological" aging as well as early and progressive cardiac hypertrophy may affect action potential (AP) pattern, contractile function, and Ca(2+) handling. We hypothesize that contractile function is disturbed in hypertrophy from early stages and is differently affected in aged myocardium. In vivo function, cardiomyocyte contractile behavior and APs were compared in Wistar-Kyoto (WIS) rats and spontaneously hypertensive rats (SHR) at different ages and degrees of hypertrophy (3-4, 9-11, 20-24 months). Post-rest (PR) behavior was used to investigate the relative contribution of the sarcoplasmic reticulum (SR) and the Na/Ca exchanger (NCX) to cytosolic Ca(2+) removal. APs were recorded by whole-cell current-clamp and sarcomere shortening by video microscopy. Cyclopiazonic acid was used to suppress Ca(2+) ATPase (SERCA) function. Heart weight/body weight ratio was increased in SHR versus WIS within all age groups. Myocyte steady state (SS) shortening amplitude was reduced in young SHR versus WIS. Aging led to a significant decay of SS contractile amplitude and relengthening velocity in WIS, but the PR potentiation was maintained. In contrast, aging in SHR led to a decrease of PR potentiation, while SS contraction and relengthening velocity increased. APD(50%) was always prolonged in SHR versus WIS. With aging, APD(50%) increased in both WIS and SHR, but was still shorter in WIS. However, in old WIS the late AP portion (APD(90%)) was prolonged. Ca(2+) handling and AP properties are disturbed progressively with aging and with increasing hypertrophy. Decreased amplitude of shortening and velocity of relengthening in aged WIS may be attributed to reduced SERCA function. In SHR, an increase in SR leak and shift towards transmembraneous Ca handling via NCX may be responsible for the changes in contractile function. A prolonged APD(90%) in aged WIS may be an adaptive mechanism to preserve basal contractility. Therefore, the effects on contractile parameters and AP are different in hypertrophy and aging.

8.
J Card Fail ; 11(5): 380-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15948089

RESUMO

BACKGROUND: Pressure overload leads to cardiac hypertrophy, which is often followed by heart failure. We tested the hypothesis that depressed contractility in this process results from an imbalance in Ca 2+ transport by the sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA) and the sarcolemmal Na+/Ca2+ exchanger (NCX). METHODS AND RESULTS: Left ventricular (LV) myocytes (n = 79) from 12 normal (N) and 5 hypertrophied (LVH, by aortic banding) feline hearts were studied. Adenoviral gene transfer was used to introduce green fluorescent protein (GFP), SERCA2, and NCX into N and LVH myocytes. Contraction (videomicroscopy) and Ca2+ transients (Fluo-3) were measured in steady state and after rest periods of 2 to 120 seconds (rest decay and potentiation). LVH hearts were significantly larger than N (7.1 +/- 1.4 versus 4.2 +/- 0.2 g/kg). SERCA protein was significantly less abundant in LVH versus N. Steady state contractions and Ca2+ transients of LVH-GFP myocytes decayed more slowly and rest decay of contractility was more pronounced compared with N-GFP. Infection of LVH (and N) myocytes with SERCA increased basal contractility and reduced rest decay. Infection of LVH myocytes with NCX almost abolished contraction and in N myocytes reduced contractility and increased rest decay. CONCLUSION: These findings suggest that an imbalance of Ca2+ transport by SERCA and the NCX produces the characteristic contractile abnormalities of hypertrophied cardiac myocytes.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Transporte de Íons/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Western Blotting , Gatos , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Ventrículos do Coração/metabolismo , Ventrículos do Coração/ultraestrutura , Hipertrofia Ventricular Esquerda/patologia , Técnicas In Vitro , Masculino , Microscopia de Vídeo , Miócitos Cardíacos/ultraestrutura , Sarcolema/metabolismo , Sarcolema/ultraestrutura , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestrutura , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA