Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 165(5): 1171-1181, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27156450

RESUMO

Telomerase is the ribonucleoprotein enzyme that replenishes telomeric DNA and maintains genome integrity. Minimally, telomerase activity requires a templating RNA and a catalytic protein. Additional proteins are required for activity on telomeres in vivo. Here, we report that the Pop1, Pop6, and Pop7 proteins, known components of RNase P and RNase MRP, bind to yeast telomerase RNA and are essential constituents of the telomerase holoenzyme. Pop1/Pop6/Pop7 binding is specific and involves an RNA domain highly similar to a protein-binding domain in the RNAs of RNase P/MRP. The results also show that Pop1/Pop6/Pop7 function to maintain the essential components Est1 and Est2 on the RNA in vivo. Consistently, addition of Pop1 allows for telomerase activity reconstitution with wild-type telomerase RNA in vitro. Thus, the same chaperoning module has allowed the evolution of functionally and, remarkably, structurally distinct RNPs, telomerase, and RNases P/MRP from unrelated progenitor RNAs.


Assuntos
Ribonuclease P/química , Ribonucleoproteínas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomycetales/enzimologia , Telomerase/química , Endorribonucleases/química , Endorribonucleases/metabolismo , Imunoprecipitação , Espectrometria de Massas , Modelos Moleculares , RNA Fúngico/metabolismo , Ribonuclease P/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo
2.
Cell ; 150(3): 453-4, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863000

RESUMO

In order for telomeres to remain functional and stable, they must rendezvous with the enzyme telomerase in a productive manner. In human cells, this interaction is mediated by Cajal bodies as matchmaker, and now Zhong et al. reveal molecular determinants that establish good chemistry between the two partners.

3.
Cell ; 147(2): 320-31, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22000012

RESUMO

In budding yeast, the most abundantly spliced pre-mRNAs encode ribosomal proteins (RPs). To investigate the contribution of splicing to ribosome production and function, we systematically eliminated introns from all RP genes to evaluate their impact on RNA expression, pre-rRNA processing, cell growth, and response to stress. The majority of introns were required for optimal cell fitness or growth under stress. Most introns are found in duplicated RP genes, and surprisingly, in the majority of cases, deleting the intron from one gene copy affected the expression of the other in a nonreciprocal manner. Consistently, 70% of all duplicated genes were asymmetrically expressed, and both introns and gene deletions displayed copy-specific phenotypic effects. Together, our results indicate that splicing in yeast RP genes mediates intergene regulation and implicate the expression ratio of duplicated RP genes in modulating ribosome function.


Assuntos
Íntrons , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Duplicação Gênica , Regulação Fúngica da Expressão Gênica , Viabilidade Microbiana , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico
4.
PLoS Genet ; 18(4): e1010167, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35486666

RESUMO

Ultraviolet light causes DNA lesions that are removed by nucleotide excision repair (NER). The efficiency of NER is conditional to transcription and chromatin structure. UV induced photoproducts are repaired faster in the gene transcribed strands than in the non-transcribed strands or in transcriptionally inactive regions of the genome. This specificity of NER is known as transcription-coupled repair (TCR). The discovery of pervasive non-coding RNA transcription (ncRNA) advocates for ubiquitous contribution of TCR to the repair of UV photoproducts, beyond the repair of active gene-transcribed strands. Chromatin rules transcription, and telomeres form a complex structure of proteins that silences nearby engineered ectopic genes. The essential protective function of telomeres also includes preventing unwanted repair of double-strand breaks. Thus, telomeres were thought to be transcriptionally inert, but more recently, ncRNA transcription was found to initiate in subtelomeric regions. On the other hand, induced DNA lesions like the UV photoproducts must be recognized and repaired also at the ends of chromosomes. In this study, repair of UV induced DNA lesions was analyzed in the subtelomeric regions of budding yeast. The T4-endonuclease V nicking-activity at cyclobutene pyrimidine dimer (CPD) sites was exploited to monitor CPD formation and repair. The presence of two photoproducts, CPDs and pyrimidine (6,4)-pyrimidones (6-4PPs), was verified by the effective and precise blockage of Taq DNA polymerase at these sites. The results indicate that UV photoproducts in silenced heterochromatin are slowly repaired, but that ncRNA transcription enhances NER throughout one subtelomeric element, called Y', and in distinct short segments of the second, more conserved element, called X. Therefore, ncRNA-transcription dependent TCR assists global genome repair to remove CPDs and 6-4PPs from subtelomeric DNA.


Assuntos
Saccharomyces cerevisiae , Raios Ultravioleta , Cromatina , DNA , Dano ao DNA/genética , Reparo do DNA/genética , Heterocromatina , Dímeros de Pirimidina/genética , RNA não Traduzido/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo , Transcrição Gênica
5.
Trends Genet ; 37(8): 695-698, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33892960

RESUMO

Like protein-coding genes, long noncoding RNA (lncRNA) genes are composed of introns and exons. After their transcription, lncRNAs are subject to constitutive and/or alternative splicing. Here, we describe the current knowledge on lncRNA splice variants and their functional implications in cell biology.


Assuntos
Processamento Alternativo/genética , DNA Recombinante/genética , RNA Longo não Codificante/genética , Éxons/genética , Íntrons/genética
6.
Biogerontology ; 25(2): 249-263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37903970

RESUMO

Telomerase, the ribonucleoprotein (RNP) responsible for telomere maintenance, has a complex life. Complex in that it is made of multiple proteins and an RNA, and complex because it undergoes many changes, and passes through different cell compartments. As such, many methods have been developed to discover telomerase components, delve deep into understanding its structure and function and to figure out how telomerase biology ultimately relates to human health and disease. While some old gold-standard methods are still key for determining telomere length and measuring telomerase activity, new technologies are providing promising new ways to gain detailed information that we have never had access to before. Therefore, we thought it timely to briefly review the methods that have revealed information about the telomerase RNP and outline some of the remaining questions that could be answered using new methodology.


Assuntos
Telomerase , Humanos , Telomerase/genética , Telômero , RNA/química , RNA/metabolismo
7.
PLoS Genet ; 16(4): e1008733, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32287268

RESUMO

In budding yeast, Cdc13, Stn1, and Ten1 form the telomere-binding heterotrimer CST complex. Here we investigate the role of Cdc13/CST in maintaining genome stability by using a Chr VII disome system that can generate recombinants, chromosome loss, and enigmatic unstable chromosomes. In cells expressing a temperature sensitive CDC13 allele, cdc13F684S, unstable chromosomes frequently arise from problems in or near a telomere. We found that, when Cdc13 is defective, passage through S phase causes Exo1-dependent ssDNA and unstable chromosomes that are then the source for additional chromosome instability events (e.g. recombinants, chromosome truncations, dicentrics, and/or chromosome loss). We observed that genome instability arises from a defect in Cdc13's function during DNA replication, not Cdc13's putative post-replication telomere capping function. The molecular nature of the initial unstable chromosomes formed by a Cdc13-defect involves ssDNA and does not involve homologous recombination nor non-homologous end joining; we speculate the original unstable chromosome may be a one-ended double strand break. This system defines a link between Cdc13's function during DNA replication and genome stability in the form of unstable chromosomes, that then progress to form other chromosome changes.


Assuntos
Instabilidade Genômica , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/metabolismo , Cromossomos Fúngicos/genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Recombinação Genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética
8.
Curr Genet ; 68(1): 3-14, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34476547

RESUMO

As the limiting component of the budding yeast telomerase, the Tlc1 RNA must undergo multiple consecutive modifications and rigorous quality checks throughout its lifecycle. These steps will ensure that only correctly processed and matured molecules are assembled into telomerase complexes that subsequently act at telomeres. The complex pathway of Tlc1 RNA maturation, involving 5'- and 3'-end processing, stabilisation and assembly with the protein subunits, requires at least one nucleo-cytoplasmic passage. Furthermore, it appears that the pathway is tightly coordinated with the association of various and changing proteins, including the export factor Xpo1, the Mex67/Mtr2 complex, the Kap122 importin, the Sm7 ring and possibly the CBC and TREX-1 complexes. Although many of these maturation processes also affect other RNA species, the Tlc1 RNA exploits them in a new combination and, therefore, ultimately follows its own and unique pathway. In this review, we highlight recent new insights in maturation and subcellular shuttling of the budding yeast telomerase RNA and discuss how these events may be fine-tuned by the biochemical characteristics of the varying processing and transport factors as well as the final telomerase components. Finally, we indicate outstanding questions that we feel are important to be addressed for a complete understanding of the telomerase RNA lifecycle and that could have implications for the human telomerase as well.


Assuntos
Proteínas de Saccharomyces cerevisiae , Telomerase , Citoplasma/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
9.
Mol Cell ; 53(6): 855-6, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24656125

RESUMO

In this issue, Soudet et al. show that the actual mechanistic details of the chromosomal end-replication problem, the principle linking telomere biology with human cellular senescence and cancer, match previous predictions almost to the nucleotide.


Assuntos
Cromossomos Fúngicos , Replicação do DNA , DNA de Cadeia Simples , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Telômero/química
10.
RNA ; 24(8): 1067-1079, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777050

RESUMO

Telomerases are ribonucleoprotein (RNP) reverse transcriptases. While telomerases maintain genome stability, their composition varies significantly between species. Yeast telomerase RNPs contain an RNA that is comparatively large, and its overall folding shows long helical segments with distal functional parts. Here we investigated the essential stem IVc module of the budding yeast telomerase RNA, called Tlc1. The distal part of stem IVc includes a conserved sequence element CS2a and structurally conserved features for binding Pop1/Pop6/Pop7 proteins, which together function analogously to the P3 domains of the RNase P/MRP RNPs. A more proximal bulged stem with the CS2 element is thought to associate with Est1, a telomerase protein required for telomerase recruitment to telomeres. Previous work found that changes in CS2a cause a loss of all stem IVc proteins, not just the Pop proteins. Here we show that the association of Est1 with stem IVc indeed requires both the proximal bulged stem and the P3 domain with the associated Pop proteins. Separating the P3 domain from the Est1 binding site by inserting only 2 base pairs into the helical stem between the two sites causes a complete loss of Est1 from the RNP and hence a telomerase-negative phenotype in vivo. Still, the distal P3 domain with the associated Pop proteins remains intact. Moreover, the P3 domain ensures Est2 stability on the RNP independently of Est1 association. Therefore, the Tlc1 stem IVc recruitment module of the RNA requires a very tight architectural organization for telomerase function in vivo.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Ribonuclease P/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , RNA/genética
11.
Nucleic Acids Res ; 46(6): 2975-2989, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29432594

RESUMO

Cdc13 is an essential protein involved in telomere maintenance and chromosome capping. Individual domain analyses on Cdc13 suggest the presence of four distinct OB-fold domains and one recruitment domain. However, it remained unclear how these sub-domains function in the context of the whole protein in vivo. Here, we use individual single domain deletions to address their roles in telomere capping. We find that the OB2 domain contains a nuclear localization signal that is essential for nuclear import of Cdc13 and therefore is required for chromosome capping. The karyopherin Msn5 is important for nuclear localization, and retention of Cdc13 in the nucleus also requires its binding to telomeres. Moreover, Cdc13 homodimerization occurs even if the protein is not bound to DNA and is in the cytoplasm. Hence, Cdc13 abundance in the nucleus and, in consequence, its capping function is strongly affected by nucleo-cytoplasmic transport as well as nuclear retention by DNA binding.


Assuntos
Núcleo Celular/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Sítios de Ligação/genética , DNA/química , DNA/genética , DNA/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Telômero/metabolismo , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo
12.
Curr Genet ; 65(1): 109-118, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30066139

RESUMO

Chromosome stability relies on an adequate length and complete replication of telomeres, the physical ends of chromosomes. Telomeres are composed of short direct repeat DNA and the associated nucleoprotein complex is essential for providing end-stability. In addition, the so-called end-replication problem of the conventional replication requires that telomeres be elongated by a special mechanism which, in virtually all organisms, is based by a reverse transcriptase, called telomerase. Although, at the conceptual level, telomere functions are highly similar in most organisms, the telomeric nucleoprotein composition appears to diverge significantly, in particular if it is compared between mammalian and budding yeast cells. However, over the last years, the CST complex has emerged as a central hub for telomere replication in most systems. Composed of three proteins, it is related to the highly conserved replication protein A complex, and in all systems studied, it coordinates telomerase-based telomere elongation with lagging-strand DNA synthesis. In budding yeast, the Cdc13 protein of this complex also is essential for telomerase recruitment and this specialisation is accompanied by additional regulatory adaptations. Based on recent results obtained in yeast, here, we review these issues and present an updated telomere replication hypothesis. We speculate that the similarities between systems far outweigh the differences, once we detach ourselves from the historic descriptions of the mechanisms in the various organisms.


Assuntos
Instabilidade Cromossômica/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Replicação do DNA/genética , Humanos , Modelos Genéticos , Mutação , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/enzimologia , Proteínas de Ligação a Telômeros/metabolismo
13.
Mol Cell ; 44(5): 819-27, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22152484

RESUMO

The telomerase, which is composed of both protein and RNA, maintains genome stability by replenishing telomeric repeats at the ends of chromosomes. Here, we use live-cell imaging to follow yeast telomerase RNA dynamics and recruitment to telomeres in single cells. Tracking of single telomerase particles revealed a diffusive behavior and transient association with telomeres in G1 and G2 phases of the cell cycle. Interestingly, concurrent with telomere elongation in late S phase, a subset of telomerase enzyme clusters and stably associates with few telomeres. Our data show that this clustering represents elongating telomerase and it depends on regulators of telomerase at telomeres (MRX, Tel1, Rif1/2, and Cdc13). Furthermore, the assay revealed premature telomere elongation in G1 in a rif1/2 strains, suggesting that Rif1/2 act as cell-cycle dependent negative regulators of telomerase. We propose that telomere elongation is organized around a local and transient accumulation of several telomerases on a few telomeres.


Assuntos
RNA/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Telomerase/metabolismo , Telômero/metabolismo , Ciclo Celular , Sobrevivência Celular , Microscopia Confocal , RNA/análise , Saccharomyces cerevisiae/metabolismo , Telomerase/análise , Telômero/química , Termodinâmica
14.
Nucleic Acids Res ; 45(8): 4577-4589, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28334768

RESUMO

Ultraviolet light (UV) causes DNA damage that is removed by nucleotide excision repair (NER). UV-induced DNA lesions must be recognized and repaired in nucleosomal DNA, higher order structures of chromatin and within different nuclear sub-compartments. Telomeric DNA is made of short tandem repeats located at the ends of chromosomes and their maintenance is critical to prevent genome instability. In Saccharomyces cerevisiae the chromatin structure of natural telomeres is distinctive and contingent to telomeric DNA sequences. Namely, nucleosomes and Sir proteins form the heterochromatin like structure of X-type telomeres, whereas a more open conformation is present at Y'-type telomeres. It is proposed that there are no nucleosomes on the most distal telomeric repeat DNA, which is bound by a complex of proteins and folded into higher order structure. How these structures affect NER is poorly understood. Our data indicate that the X-type, but not the Y'-type, sub-telomeric chromatin modulates NER, a consequence of Sir protein-dependent nucleosome stability. The telomere terminal complex also prevents NER, however, this effect is largely dependent on the yKu-Sir4 interaction, but Sir2 and Sir3 independent.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Telômero/efeitos da radiação , Dano ao DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cinética , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Telômero/química , Telômero/metabolismo , Raios Ultravioleta
15.
PLoS Genet ; 12(12): e1006479, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27930670

RESUMO

The Ku complex binds non-specifically to DNA breaks and ensures repair via NHEJ. However, Ku is also known to bind directly to telomeric DNA ends and its presence there is associated with telomere capping, but avoiding NHEJ. How the complex discriminates between a DNA break and a telomeric extremity remains unknown. Our results using a tagged Ku complex, or a chromosome end capturing method, in budding yeast show that yKu association with telomeres can occur at sites distant from the physical end, on sub-telomeric elements, as well as on interstitial telomeric repeats. Consistent with previous studies, our results also show that yKu associates with telomeres in two distinct and independent ways: either via protein-protein interactions between Yku80 and Sir4 or via direct DNA binding. Importantly, yKu associates with the new sites reported here via both modes. Therefore, in sir4Δ cells, telomere bound yKu molecules must have loaded from a DNA-end near the transition of non-telomeric to telomeric repeat sequences. Such ends may have been one sided DNA breaks that occur as a consequence of stalled replication forks on or near telomeric repeat DNA. Altogether, the results predict a new model for yKu function at telomeres that involves yKu binding at one-sided DNA breaks caused by replication stalling. On telomere proximal chromatin, this binding is not followed by initiation of non-homologous end-joining, but rather by break-induced replication or repeat elongation by telomerase. After repair, the yKu-distal portion of telomeres is bound by Rap1, which in turn reduces the potential for yKu to mediate NHEJ. These results thus propose a solution to a long-standing conundrum, namely how to accommodate the apparently conflicting functions of Ku on telomeres.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rap1 de Ligação ao GTP/genética , Cromossomos Fúngicos/genética , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero , Proteínas de Ligação a Telômeros/genética
16.
Blood ; 125(13): 2101-10, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25568351

RESUMO

Hodgkin lymphoma (HL) and Burkitt lymphoma are both germinal center-derived B-cell lymphomas. To assess the consequences of permanent latent membrane protein 1 (LMP1) expression as observed in tumor cells of Epstein-Barr virus (EBV) -associated HL, we analyzed 3-dimensional (3D) telomere dynamics and measured the expression of shelterin proteins at the transcriptional and translational level and their topographic distribution in the EBV-negative Burkitt cell line BJAB stably transfected with an inducible LMP1 system. Stable LMP1 expression led to a highly significant increase of multinucleated cells, nuclear volume, and 3D telomeric aggregates when compared with the LMP1-suppressed BJAB controls. Most importantly, LMP1 induced a significant downregulation of the shelterin components TRF1, TRF2, and POT1 at the transcriptional and translational level, and this downregulation was reversed after resuppression of LMP1. In addition, as revealed by spectral karyotyping, LMP1 induced "outré" giant cells and hypoploid "ghost" cells. This LMP1-induced multinucleation was blocked upon LMP1-independent TRF2 expression. These results show that LMP1-dependent deregulation of telomere stability and nuclear organization via shelterin downregulation, in particular TRF2, favors chromosomal rearrangements. We speculate that telomeric aggregates and ongoing breakage-bridge-fusion cycles lead to disturbed cytokinesis and finally to multinuclearity, as observed in EBV-associated HL.


Assuntos
Núcleo Celular , Células Gigantes/metabolismo , Proteínas de Ligação a Telômeros/genética , Telômero/metabolismo , Proteínas da Matriz Viral/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Transformação Celular Viral/genética , Regulação para Baixo , Células Gigantes/patologia , Doença de Hodgkin/genética , Doença de Hodgkin/patologia , Doença de Hodgkin/virologia , Humanos , Agregados Proteicos/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/metabolismo
17.
Mol Cell ; 36(2): 168-9, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19854124

RESUMO

Telomeres are bound and stabilized by two complexes-CST and shelterin-thought to be species specific and virtually unrelated. In this issue of Molecular Cell, Miyake et al. (2009) and Surovtseva et al. (2009) provide evidence that these complexes coexist and function at telomeres in many species.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Camundongos , Modelos Biológicos , Proteína de Replicação A/metabolismo , Proteínas de Ligação a Telômeros/química
18.
Trends Biochem Sci ; 37(9): 391-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22727244

RESUMO

The stability of the ends of linear eukaryotic chromosomes is ensured by functional telomeres, which are composed of short, species-specific direct repeat sequences. The maintenance of telomeres depends on a specialized ribonucleoprotein (RNP) called telomerase. Both telomeres and telomerase are dynamic entities with different physical behaviors and, given their substrate-enzyme relation, they must establish a productive interaction. Regulatory mechanisms controlling this interaction are key missing elements in our understanding of telomere functions. Here, we review the dynamic properties of telomeres and the maturing telomerase RNPs, and summarize how tracking the timing of their dance during the cell cycle will yield insights into chromosome stability mechanisms. Cancer cells often display loss of genome integrity; therefore, these issues are of particular interest for our understanding of cancer initiation or progression.


Assuntos
Ciclo Celular , Telomerase/metabolismo , Telômero/metabolismo , Animais , Núcleo Celular/enzimologia , Humanos , Ribonucleoproteínas/metabolismo
19.
RNA ; 19(7): 992-1002, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23690630

RESUMO

Telomerase is a specialized ribonucleoprotein that adds repeated DNA sequences to the ends of eukaryotic chromosomes to preserve genome integrity. Some secondary structure features of the telomerase RNA are very well conserved, and it serves as a central scaffold for the binding of associated proteins. The Saccharomyces cerevisiae telomerase RNA, TLC1, is found in very low copy number in the cell and is the limiting component of the known telomerase holoenzyme constituents. The reasons for this low abundance are unclear, but given that the RNA is very stable, transcriptional control mechanisms must be extremely important. Here we define the sequences forming the TLC1 promoter and identify the elements required for its low expression level, including enhancer and repressor elements. Within an enhancer element, we found consensus sites for Mbp1/Swi4 association, and chromatin immunoprecipitation (ChIP) assays confirmed the binding of Mbp1 and Swi4 to these sites of the TLC1 promoter. Furthermore, the enhancer element conferred cell cycle-dependent regulation to a reporter gene, and mutations in the Mbp1/Swi4 binding sites affected the levels of telomerase RNA and telomere length. Finally, ChIP experiments using a TLC1 RNA-binding protein as target showed cell cycle-dependent transcription of the TLC1 gene. These results indicate that the budding yeast TLC1 RNA is transcribed in a cell cycle-dependent fashion late in G1 and may be part of the S phase-regulated group of genes involved in DNA replication.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Telomerase/genética , Sítios de Ligação , Ciclo Celular , Imunoprecipitação da Cromatina , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Reporter , Mutação , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Fúngico/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Homeostase do Telômero , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
20.
Nucleic Acids Res ; 41(16): 7713-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23783570

RESUMO

The stability of chromosome ends, the telomeres, is dependent on the ribonucleoprotein telomerase. In vitro, telomerase requires at least one RNA molecule and a reverse transcriptase-like protein. However, for telomere homeostasis in vivo, additional proteins are required. Telomerase RNAs of different species vary in size and sequence and only few features common to all telomerases are known. Here we show that stem-loop IVc of the Saccharomyces cerevisiae telomerase RNA contains a structural element that is required for telomerase function in vivo. Indeed, the distal portion of stem-loop IVc stimulates telomerase activity in vitro in a way that is independent of Est1 binding on more proximal portions of this stem-loop. Functional analyses of the RNA in vivo reveal that this distal element we call telomerase-stimulating structure (TeSS) must contain a bulged area in single stranded form and also show that Est1-dependent functions such as telomerase import or recruitment are not affected by TeSS. This study thus uncovers a new structural telomerase RNA element implicated in catalytic activity. Given previous evidence for TeSS elements in ciliate and mammalian RNAs, we speculate that this substructure is a conserved feature that is required for optimal telomerase holoenzyme function.


Assuntos
RNA/química , Telomerase/química , Homeostase do Telômero , Sequência de Bases , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA