Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(11): 1588-1599, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36266363

RESUMO

Dysfunctional CD8+ T cells, which have defective production of antitumor effectors, represent a major mediator of immunosuppression in the tumor microenvironment. Here, we show that SUSD2 is a negative regulator of CD8+ T cell antitumor function. Susd2-/- effector CD8+ T cells showed enhanced production of antitumor molecules, which consequently blunted tumor growth in multiple syngeneic mouse tumor models. Through a quantitative mass spectrometry assay, we found that SUSD2 interacted with interleukin (IL)-2 receptor α through sushi domain-dependent protein interactions and that this interaction suppressed the binding of IL-2, an essential cytokine for the effector functions of CD8+ T cells, to IL-2 receptor α. SUSD2 was not expressed on regulatory CD4+ T cells and did not affect the inhibitory function of these cells. Adoptive transfer of Susd2-/- chimeric antigen receptor T cells induced a robust antitumor response in mice, highlighting the potential of SUSD2 as an immunotherapy target for cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Linhagem Celular Tumoral , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Receptores de Interleucina-2/metabolismo , Transdução de Sinais , Microambiente Tumoral
2.
Annu Rev Immunol ; 29: 707-35, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21219188

RESUMO

Inflammasome activation leads to caspase-1 activation, which causes the maturation and secretion of pro-IL-1ß and pro-IL-18 among other substrates. A subgroup of the NLR (nucleotide-binding domain, leucine-rich repeat containing) proteins are key mediators of the inflammasome. Studies of gene-deficient mice and cells have implicated NLR inflammasomes in a host of responses to a wide range of microbial pathogens, inflammatory diseases, cancer, and metabolic and autoimmune disorders. Determining exactly how the inflammasome is activated in these diseases and disease models remains a challenge. This review presents and integrates recent progress in the field.


Assuntos
Inflamassomos/imunologia , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Animais , Humanos , Mediadores da Inflamação/imunologia , Doenças Metabólicas/imunologia , Neoplasias/imunologia
3.
Immunity ; 50(3): 576-590.e6, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30770249

RESUMO

Elevated glucose metabolism in immune cells represents a hallmark feature of many inflammatory diseases, such as sepsis. However, the role of individual glucose metabolic pathways during immune cell activation and inflammation remains incompletely understood. Here, we demonstrate a previously unrecognized anti-inflammatory function of the O-linked ß-N-acetylglucosamine (O-GlcNAc) signaling associated with the hexosamine biosynthesis pathway (HBP). Despite elevated activities of glycolysis and the pentose phosphate pathway, activation of macrophages with lipopolysaccharide (LPS) resulted in attenuated HBP activity and protein O-GlcNAcylation. Deletion of O-GlcNAc transferase (OGT), a key enzyme for protein O-GlcNAcylation, led to enhanced innate immune activation and exacerbated septic inflammation. Mechanistically, OGT-mediated O-GlcNAcylation of the serine-threonine kinase RIPK3 on threonine 467 (T467) prevented RIPK3-RIPK1 hetero- and RIPK3-RIPK3 homo-interaction and inhibited downstream innate immunity and necroptosis signaling. Thus, our study identifies an immuno-metabolic crosstalk essential for fine-tuning innate immune cell activation and highlights the importance of glucose metabolism in septic inflammation.


Assuntos
Apoptose/fisiologia , Inflamação/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Necrose/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Linhagem Celular , Glucose/metabolismo , Humanos , Imunidade Inata/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Serina/metabolismo , Transdução de Sinais/fisiologia , Treonina/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(26): e2123247119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733245

RESUMO

Mitochondria, a highly metabolically active organelle, have been shown to play an essential role in regulating innate immune function. Mitochondrial Ca2+ uptake via the mitochondrial Ca2+ uniporter (MCU) is an essential process regulating mitochondrial metabolism by targeting key enzymes involved in the tricarboxylic acid cycle (TCA). Accumulative evidence suggests MCU-dependent mitochondrial Ca2+ signaling may bridge the metabolic reprogramming and regulation of immune cell function. However, the mechanism by which MCU regulates inflammation and its related disease remains elusive. Here we report a critical role of MCU in promoting phagocytosis-dependent activation of NLRP3 (nucleotide-binding domain, leucine-rich repeat containing family, pyrin domain-containing 3) inflammasome by inhibiting phagolysosomal membrane repair. Myeloid deletion of MCU (McuΔmye) resulted in an attenuated phagolysosomal rupture, leading to decreased caspase-1 cleavage and interleukin (IL)-1ß release, in response to silica or alum challenge. In contrast, other inflammasome agonists such as adenosine triphosphate (ATP), nigericin, poly(dA:dT), and flagellin induced normal IL-1ß release in McuΔmye macrophages. Mechanistically, we demonstrated that decreased NLRP3 inflammasome activation in McuΔmye macrophages was caused by improved phagolysosomal membrane repair mediated by ESCRT (endosomal sorting complex required for transport)-III complex. Furthermore, McuΔmye mice showed a pronounced decrease in immune cell recruitment and IL-1ß production in alum-induced peritonitis, a typical IL-1-dependent inflammation model. In sum, our results identify a function of MCU in promoting phagocytosis-dependent NLRP3 inflammatory response via an ESCRT-mediated phagolysosomal membrane repair mechanism.


Assuntos
Canais de Cálcio , Inflamassomos , Proteínas Mitocondriais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peritonite , Fagocitose , Compostos de Alúmen , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Caspase 1/metabolismo , Modelos Animais de Doenças , Complexos Endossomais de Distribuição Requeridos para Transporte , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peritonite/induzido quimicamente , Peritonite/metabolismo
5.
Cancer Immunol Immunother ; 73(3): 52, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349405

RESUMO

INTRODUCTION: As one of the major components of the tumor microenvironment, tumor-associated macrophages (TAMs) possess profound inhibitory activity against T cells and facilitate tumor escape from immune checkpoint blockade therapy. Converting this pro-tumorigenic toward the anti-tumorigenic phenotype thus is an important strategy for enhancing adaptive immunity against cancer. However, a plethora of mechanisms have been described for pro-tumorigenic differentiation in cancer, metabolic switches to program the anti-tumorigenic property of TAMs are elusive. MATERIALS AND METHODS: From an unbiased analysis of single-cell transcriptome data from multiple tumor models, we discovered that anti-tumorigenic TAMs uniquely express elevated levels of a specific fatty acid receptor, G-protein-coupled receptor 84 (GPR84). Genetic ablation of GPR84 in mice leads to impaired pro-inflammatory polarization of macrophages, while enhancing their anti-inflammatory phenotype. By contrast, GPR84 activation by its agonist, 6-n-octylaminouracil (6-OAU), potentiates pro-inflammatory phenotype via the enhanced STAT1 pathway. Moreover, 6-OAU treatment significantly retards tumor growth and increases the anti-tumor efficacy of anti-PD-1 therapy. CONCLUSION: Overall, we report a previously unappreciated fatty acid receptor, GPR84, that serves as an important metabolic sensing switch for orchestrating anti-tumorigenic macrophage polarization. Pharmacological agonists of GPR84 hold promise to reshape and reverse the immunosuppressive TME, and thereby restore responsiveness of cancer to overcome resistance to immune checkpoint blockade.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Animais , Camundongos , Carcinogênese , Ácidos Graxos , Macrófagos , Microambiente Tumoral , Macrófagos Associados a Tumor
6.
Nat Immunol ; 13(4): 352-7, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22430788

RESUMO

The inflammasome is a protein complex that comprises an intracellular sensor (typically a Nod-like receptor), the precursor procaspase-1 and the adaptor ASC. Inflammasome activation leads to the maturation of caspase-1 and the processing of its substrates, interleukin 1ß (IL-1ß) and IL-18. Although initially the inflammasome was described as a complex that affects infection and inflammation, subsequent evidence has suggested that inflammasome activation influences many metabolic disorders, including atherosclerosis, type 2 diabetes, gout and obesity. Another feature of inflammation in general and the inflammasome specifically is that the activation process has a profound effect on aerobic glycolysis (the 'Warburg effect'). Here we explore how the Warburg effect might be linked to inflammation and inflammasome activation.


Assuntos
Glicólise/imunologia , Inflamassomos/imunologia , Inflamassomos/metabolismo , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Animais , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR
7.
Nat Immunol ; 13(9): 823-31, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22863753

RESUMO

Several members of the NLR family of sensors activate innate immunity. In contrast, we found here that NLRC3 inhibited Toll-like receptor (TLR)-dependent activation of the transcription factor NF-κB by interacting with the TLR signaling adaptor TRAF6 to attenuate Lys63 (K63)-linked ubiquitination of TRAF6 and activation of NF-κB. We used bioinformatics to predict interactions between NLR and TRAF proteins, including interactions of TRAF with NLRC3. In vivo, macrophage expression of Nlrc3 mRNA was diminished by the administration of lipopolysaccharide (LPS) but was restored when cellular activation subsided. To assess biologic relevance, we generated Nlrc3(-/-) mice. LPS-treated Nlrc3(-/-) macrophages had more K63-ubiquitinated TRAF6, nuclear NF-κB and proinflammatory cytokines. Finally, LPS-treated Nlrc3(-/-) mice had more signs of inflammation. Thus, signaling via NLRC3 and TLR constitutes a negative feedback loop. Furthermore, prevalent NLR-TRAF interactions suggest the formation of a 'TRAFasome' complex.


Assuntos
NF-kappa B/imunologia , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais/imunologia , Fator 6 Associado a Receptor de TNF/imunologia , Receptores Toll-Like/imunologia , Sequência de Aminoácidos , Animais , Retroalimentação Fisiológica , Células HEK293 , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator 6 Associado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo
8.
BMC Med Imaging ; 24(1): 85, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600452

RESUMO

BACKGROUND: 1p/19q co-deletion in low-grade gliomas (LGG, World Health Organization grade II and III) is of great significance in clinical decision making. We aim to use radiomics analysis to predict 1p/19q co-deletion in LGG based on amide proton transfer weighted (APTw), diffusion weighted imaging (DWI), and conventional MRI. METHODS: This retrospective study included 90 patients histopathologically diagnosed with LGG. We performed a radiomics analysis by extracting 8454 MRI-based features form APTw, DWI and conventional MR images and applied a least absolute shrinkage and selection operator (LASSO) algorithm to select radiomics signature. A radiomics score (Rad-score) was generated using a linear combination of the values of the selected features weighted for each of the patients. Three neuroradiologists, including one experienced neuroradiologist and two resident physicians, independently evaluated the MR features of LGG and provided predictions on whether the tumor had 1p/19q co-deletion or 1p/19q intact status. A clinical model was then constructed based on the significant variables identified in this analysis. A combined model incorporating both the Rad-score and clinical factors was also constructed. The predictive performance was validated by receiver operating characteristic curve analysis, DeLong analysis and decision curve analysis. P < 0.05 was statistically significant. RESULTS: The radiomics model and the combined model both exhibited excellent performance on both the training and test sets, achieving areas under the curve (AUCs) of 0.948 and 0.966, as well as 0.909 and 0.896, respectively. These results surpassed the performance of the clinical model, which achieved AUCs of 0.760 and 0.766 on the training and test sets, respectively. After performing Delong analysis, the clinical model did not significantly differ in predictive performance from three neuroradiologists. In the training set, both the radiomic and combined models performed better than all neuroradiologists. In the test set, the models exhibited higher AUCs than the neuroradiologists, with the radiomics model significantly outperforming resident physicians B and C, but not differing significantly from experienced neuroradiologist. CONCLUSIONS: Our results suggest that our algorithm can noninvasively predict the 1p/19q co-deletion status of LGG. The predictive performance of radiomics model was comparable to that of experienced neuroradiologist, significantly outperforming the diagnostic accuracy of resident physicians, thereby offering the potential to facilitate non-invasive 1p/19q co-deletion prediction of LGG.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Prótons , Estudos Retrospectivos , Radiômica , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Algoritmos , Imageamento por Ressonância Magnética/métodos
9.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507993

RESUMO

Interleukin 6 (IL-6) is known to regulate the CD4 T cell function by inducing gene expression of a number of cytokines through activation of Stat3 transcription factor. Here, we reveal that IL-6 strengthens the mechanics of CD4 T cells. The presence of IL-6 during activation of mouse and human CD4 T cells enhances their motility (random walk and exploratory spread), resulting in an increase in travel distance and higher velocity. This is an intrinsic effect of IL-6 on CD4 T-cell fitness that involves an increase in mitochondrial Ca2+ Although Stat3 transcriptional activity is dispensable for this process, IL-6 uses mitochondrial Stat3 to enhance mitochondrial Ca2+-mediated motility of CD4 T cells. Thus, through a noncanonical pathway, IL-6 can improve competitive fitness of CD4 T cells by facilitating cell motility. These results could lead to alternative therapeutic strategies for inflammatory diseases in which IL-6 plays a pathogenic role.


Assuntos
Movimento Celular/fisiologia , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/efeitos dos fármacos
10.
BMC Nurs ; 23(1): 404, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886795

RESUMO

BACKGROUND: As indispensable reserves for the nursing workforce, undergraduate nursing students must possess self-directed learning abilities to consistently update their professional knowledge and adapt to the evolving demands of professional development. The acquisition of self-directed learning abilities can help undergraduate nursing students augment their theoretical knowledge and refine their clinical practice skills, thus fulfilling the demand from patients for high-quality nursing services. Hence, comprehending and investigating the factors that influence the development of self-directed learning abilities in nursing students is of paramount importance for nursing education and advancement of the nursing profession. OBJECTIVES: This study investigated the status of and associations between perceived stress, psychological capital, and self-directed learning abilities among undergraduate nursing students. Additionally, it examines the mediating role of psychological capital in the relationship between perceived stress and self-directed learning abilities. Thus, aiming to provide nursing educators with new directions for enhancing self-directed learning abilities. DESIGN: A cross-sectional descriptive study. METHODS: In February and March 2023, 900 undergraduate nursing students from 10 nursing schools completed an online questionnaire. The questionnaire included measures of perceived stress, psychological capital, and self-directed learning ability. Data were analyzed using SPSS 27.0 and the PROCESS macro tool. RESULTS: The scores for perceived stress, psychological capital, and self-directed learning ability among undergraduate nursing students were 40.07 ± 5.90, 99.89 ± 16.59, and 87.12 ± 9.20, respectively. Self-directed learning abilities were negatively correlated with perceived stress (r = -0.415, p < 0.001) and positively correlated with psychological capital (r = 0.465, p < 0.001). Perceived stress was negatively correlated with psychological capital (r = -0.630, p < 0.001). Psychological capital partially mediated the relationship between perceived stress and self-directed learning abilities among undergraduate nursing students, with a mediation effect of -0.166, accounting for 49.55% of the total effect. CONCLUSION: This study found that undergraduate nursing students perceived high levels of stress, possessed low levels of psychological capital, and had moderate levels of self-directed learning. Perceived stress and psychological capital directly influenced undergraduate nursing students' self-directed learning abilities, and perceived stress indirectly affected self-directed learning abilities through psychological capital. Nursing managers and educators should alleviate the perceived stress of undergraduate nursing students and cultivate their positive psychological capital to enhance self-directed learning abilities.

11.
Nat Immunol ; 12(5): 408-15, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21478880

RESUMO

High-fat diet (HFD) and inflammation are key contributors to insulin resistance and type 2 diabetes (T2D). Interleukin (IL)-1ß plays a role in insulin resistance, yet how IL-1ß is induced by the fatty acids in an HFD, and how this alters insulin signaling, is unclear. We show that the saturated fatty acid palmitate, but not unsaturated oleate, induces the activation of the NLRP3-ASC inflammasome, causing caspase-1, IL-1ß and IL-18 production. This pathway involves mitochondrial reactive oxygen species and the AMP-activated protein kinase and unc-51-like kinase-1 (ULK1) autophagy signaling cascade. Inflammasome activation in hematopoietic cells impairs insulin signaling in several target tissues to reduce glucose tolerance and insulin sensitivity. Furthermore, IL-1ß affects insulin sensitivity through tumor necrosis factor-independent and dependent pathways. These findings provide insights into the association of inflammation, diet and T2D.


Assuntos
Proteínas de Transporte/imunologia , Gorduras na Dieta/imunologia , Inflamassomos/imunologia , Resistência à Insulina/imunologia , Ácido Palmítico/imunologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Autofagia/imunologia , Caspase 1/imunologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Interleucina-1beta/imunologia , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteína 3 que Contém Domínio de Pirina da Família NLR , Oligopeptídeos/farmacologia , Espécies Reativas de Oxigênio/imunologia , Ribonucleotídeos/farmacologia , Transdução de Sinais
12.
Immunity ; 40(3): 329-41, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24560620

RESUMO

Stimulator of interferon genes (STING, also named MITA, MYPS, or ERIS) is an intracellular DNA sensor that induces type I interferon through its interaction with TANK-binding kinase 1 (TBK1). Here we found that the nucleotide-binding, leucine-rich-repeat-containing protein, NLRC3, reduced STING-dependent innate immune activation in response to cytosolic DNA, cyclic di-GMP (c-di-GMP), and DNA viruses. NLRC3 associated with both STING and TBK1 and impeded STING-TBK1 interaction and downstream type I interferon production. By using purified recombinant proteins, we found NLRC3 to interact directly with STING. Furthermore, NLRC3 prevented proper trafficking of STING to perinuclear and punctated region, known to be important for its activation. In animals, herpes simplex virus 1 (HSV-1)-infected Nlrc3(-/-) mice exhibited enhanced innate immunity and reduced morbidity and viral load. This demonstrates the intersection of two key pathways of innate immune regulation, NLR and STING, to fine tune host response to intracellular DNA, DNA virus, and c-di-GMP.


Assuntos
DNA/imunologia , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Citocinas/biossíntese , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Interferon Tipo I/biossíntese , Camundongos , Camundongos Knockout , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico
14.
Immunity ; 39(3): 432-41, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24054327
15.
Eur Radiol ; 32(5): 2976-2987, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066634

RESUMO

OBJECTIVES: To evaluate the performance of velocity-selective (VS) ASL among patients with untreated gliomas by comparing with both pseudo-continuous (PC) ASL and dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI). METHODS: Forty-four consecutive patients with newly diagnosed glioma who underwent preoperative perfusion MRI including VSASL, PCASL, and DSC-PWI between 2017 and 2019 were retrospectively evaluated. Visual inspection was performed to evaluate the tumor signal intensity relative to gray matter based on 1-5 score criteria and weighted kappa was used to evaluate the pair-wise concordance between VSASL or PCASL and DSC-PWI. The relative tumor blood flow (rTBF) was measured from sampling intra-tumoral areas of hot-spot on the blood flow map and normalized against the contralateral normal gray matter blood flow. Linear regression and Bland-Altman analyses were performed to evaluate the correlation and agreement of rTBF measurements between ASL methods and DSC-PWI. The ROC analysis was constructed to determine the diagnostic performance of three perfusion methods for grading gliomas. RESULTS: TBF maps derived from VSASL were more comparable with DSC-PWI than PCASL on visual inspection (weighted kappa of 0.90 vs 0.68). In quantitative analysis, VSASL-rTBF yielded higher correlation with the values from DSC-PWI than PCASL-rTBF (R2 = 80% vs 47%, p < 0.001 for both). Both ASL and DSC-derived rTBF showed good distinction between low-grade and high-grade gliomas (p < 0.001). Compared to PCASL, VSASL yielded superior diagnostic sensitivity, specificity, and accuracy in glioma grading. CONCLUSIONS: VSASL showed great promise for accurate quantification of TBF and could potentially improve the diagnostic performance of ASL in preoperative grading of gliomas. KEY POINTS: • VSASL demonstrated a greater agreement with DSC-PWI than with PCASL on visual inspection and perfusion quantification. • VSASL showed a higher diagnostic sensitivity, negative predictive value, and accuracy than PCASL for glioma grading. • With the advantages of insensitivity to transit delay and no need of prescribing a labeling plane, VSASL could potentially improve the diagnostic performance of ASL for a more accurate, noninvasive quantification of TBF in patients with glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Circulação Cerebrovascular/fisiologia , Meios de Contraste/farmacologia , Glioma/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Perfusão , Estudos Retrospectivos , Marcadores de Spin
16.
Mol Cell ; 54(2): 297-308, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766894

RESUMO

Modern medical and hygienic practices have greatly improved human health and longevity; however, increased human life span occurs concomitantly with the emergence of metabolic and age-related diseases. Studies over the past decade have strongly linked host inflammatory responses to the etiology of several metabolic diseases including atherosclerosis, type 2 diabetes (T2D), obesity, and gout. A common immunological factor to these diseases is the activation of the inflammasome and release of proinflammatory cytokines that promote disease progression. Here we review the molecular mechanism(s) of inflammasome activation in response to metabolic damage-associated molecular patterns (DAMPs) and discuss potential targets for therapeutic intervention.


Assuntos
Inflamassomos/fisiologia , Doenças Metabólicas/genética , Modelos Imunológicos , Animais , Aterosclerose/genética , Aterosclerose/imunologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/imunologia , Gota/genética , Gota/imunologia , Humanos , Doenças Metabólicas/imunologia , Camundongos , Obesidade/genética , Obesidade/imunologia
17.
Water Sci Technol ; 85(11): 3196-3207, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35704405

RESUMO

Fluorine is one of the essential trace elements for human life activities, but excessive intake of fluoride poses a great risk to people's health. In this paper, a series of mixed matrix membrane (MMM)-based polysulfone for removing fluoride were prepared by phase inversion, and their properties, adsorption capacity, adsorption isotherms, adsorption kinetics of fluoride ions, and mechanism were all investigated. The results confirmed that the MMM contained a large number of hydroxyl and aluminum functional groups due to resin being added. The MMM exhibited the best fluorine ion adsorption capacity of 2.502 mg/g at a pH of 6 with the initial concentration of 6 mg/L. As well, adsorption kinetics of fluorine ion on MMM followed the pseudo-second-order model, while the adsorption behavior of fluorine ion on MMM was well simulated by the Langmuir isotherm model. The adsorption capacity of MMM remained stable after six cycles and the regeneration efficiency was still above 80%, resulting in a long-term stability adequate for fluorine ion removal. Complexation and ion exchange played a key role in the fluorine ion adsorption of MMM. These results indicated the MMM as novel type of absorbent had an excellent capacity for removing fluoride.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Fluoretos , Flúor , Humanos , Concentração de Íons de Hidrogênio , Cinética , Polímeros , Sulfonas , Poluentes Químicos da Água/química , Purificação da Água/métodos
18.
Immunity ; 36(6): 933-46, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22749352

RESUMO

The mitochondrial protein MAVS (also known as IPS-1, VISA, and CARDIF) interacts with RIG-I-like receptors (RLRs) to induce type I interferon (IFN-I). NLRX1 is a mitochondrial nucleotide-binding, leucine-rich repeats (NLR)-containing protein that attenuates MAVS-RLR signaling. Using Nlrx1(-/-) cells, we confirmed that NLRX1 attenuated IFN-I production, but additionally promoted autophagy during viral infection. This dual function of NLRX1 paralleled the previously described functions of the autophagy-related proteins Atg5-Atg12, but NLRX1 did not associate with Atg5-Atg12. High-throughput quantitative mass spectrometry and endogenous protein-protein interaction revealed an NLRX1-interacting partner, mitochondrial Tu translation elongation factor (TUFM). TUFM interacted with Atg5-Atg12 and Atg16L1 and has similar functions as NLRX1 by inhibiting RLR-induced IFN-I but promoting autophagy. In the absence of NLRX1, increased IFN-I and decreased autophagy provide an advantage for host defense against vesicular stomatitis virus. This study establishes a link between an NLR protein and the viral-induced autophagic machinery via an intermediary partner, TUFM.


Assuntos
Autofagia/fisiologia , Interferon Tipo I/biossíntese , Proteínas Mitocondriais/fisiologia , Fator Tu de Elongação de Peptídeos/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sequência de Aminoácidos , Animais , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/fisiologia , Citocinas/biossíntese , Citocinas/genética , Proteína DEAD-box 58 , RNA Helicases DEAD-box/fisiologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Interferon Tipo I/genética , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Complexos Multiproteicos/fisiologia , Fator Tu de Elongação de Peptídeos/química , Mapeamento de Interação de Proteínas , Proteínas/fisiologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Organismos Livres de Patógenos Específicos , Vesiculovirus/fisiologia
19.
BMC Med Imaging ; 21(1): 193, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911489

RESUMO

INTRODUCTION: Accurately assessing axillary lymph node (ALN) status in breast cancer is vital for clinical decision making and prognosis. The purpose of this study was to evaluate the predictive value of sentinel lymph node (SLN) mapped by multidetector-row computed tomography lymphography (MDCT-LG) for ALN metastasis in breast cancer patients. METHODS: 112 patients with breast cancer who underwent preoperative MDCT-LG examination were included in the study. Long-axis diameter, short-axis diameter, ratio of long-/short-axis and cortical thickness were measured. Logistic regression analysis was performed to evaluate independent predictors associated with ALN metastasis. The prediction of ALN metastasis was determined with related variables of SLN using receiver operating characteristic (ROC) curve analysis. RESULTS: Among the 112 cases, 35 (30.8%) cases had ALN metastasis. The cortical thickness in metastatic ALN group was significantly thicker than that in non-metastatic ALN group (4.0 ± 1.2 mm vs. 2.4 ± 0.7 mm, P < 0.001). Multi-logistic regression analysis indicated that cortical thickness of > 3.3 mm (OR 24.53, 95% CI 6.58-91.48, P < 0.001) had higher risk for ALN metastasis. The best sensitivity, specificity, negative predictive value(NPV) and AUC of MDCT-LG for ALN metastasis prediction based on the single variable of cortical thickness were 76.2%, 88.5%, 90.2% and 0.872 (95% CI 0.773-0.939, P < 0.001), respectively. CONCLUSION: ALN status can be predicted using the imaging features of SLN which was mapped on MDCT-LG in breast cancer patients. Besides, it may be helpful to select true negative lymph nodes in patients with early breast cancer, and SLN biopsy can be avoided in clinically and radiographically negative axilla.


Assuntos
Axila/patologia , Neoplasias da Mama/patologia , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Tomografia Computadorizada Multidetectores , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Adulto , Idoso , Meios de Contraste , Feminino , Humanos , Imageamento Tridimensional , Iopamidol , Linfografia/métodos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos , Sensibilidade e Especificidade
20.
Acta Biochim Biophys Sin (Shanghai) ; 53(4): 446-453, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637977

RESUMO

Long non-coding RNAs (lncRNAs) have been proposed to play pivotal roles in the tumorigenesis of various malignant tumors. Previous studies have found that lncRNA LBX2-AS1 is involved in the progression of various tumors. However, currently, the expression and exact mechanism of LBX2-AS1 in glioma remain unclear. In this study, using online-available datasets combined with clinical glioma tissues collected, we found that LBX2-AS1 was significantly increased and negatively correlated with prognosis in glioma. In vitro functional assays such as CCK-8, Annexin V, transwell assay, and western blot analysis showed that silencing of LBX2-AS1 suppressed the proliferation, migration, and invasion of glioma cells and increased apoptosis. RNA sequencing and western blot analysis confirmed that LBX2-AS1 regulates the Akt/GSK3ß pathway. In conclusion, this study showed that lncRNA LBX2-AS1 depletion inhibits the proliferation, migration, and invasion of glioma cells and increases apoptosis through the Akt/GSK3ß pathway. lncRNA LBX2-AS1 is expected to become a new target for glioma therapy.


Assuntos
Inativação Gênica , Glioma/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Glioma/genética , Glioma/patologia , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA