Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(3): 1340-1361, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34863014

RESUMO

Myst family is highly conserved histone acetyltransferases in eukaryotic cells and is known to play crucial roles in various cellular processes; however, acetylation catalysed by acetyltransferases is unclear in filamentous fungi. Here, we identified two classical nonessential Myst enzymes and analysed their functions in Aspergillus flavus, which generates aflatoxin B1, one of the most carcinogenic secondary metabolites. MystA and MystB located in nuclei and cytoplasm, and mystA could acetylate H4K16ac, while mystB acetylates H3K14ac, H3K18ac and H3K23ac. Deletion mystA resulted in decreased conidiation, increased sclerotia formation and aflatoxin production. Deletion of mystB leads to significant defects in conidiation, sclerotia formation and aflatoxin production. Additionally, double-knockout mutant (ΔmystA/mystB) display a stronger and similar defect to ΔmystB mutant, indicating that mystB plays a major role in regulating development and aflatoxin production. Both mystA and mystB play important role in crop colonization. Moreover, catalytic domain MOZ and the catalytic site E199/E243 were important for the acetyltransferase function of Myst. Notably, chromatin immunoprecipitation results indicated that mystB participated in oxidative detoxification by regulating the acetylation level of H3K14, and further regulated nsdD to affect sclerotia formation and aflatoxin production. This study provides new evidences to discover the biological functions of histone acetyltransferase in A. flavus.


Assuntos
Aflatoxinas , Aspergillus flavus , Acetilação , Aflatoxinas/genética , Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Morfogênese , Esporos Fúngicos/metabolismo
2.
Environ Microbiol ; 24(11): 5596-5610, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36059183

RESUMO

Aspergillus flavus is a ubiquitous saprotrophic soil-borne pathogenic fungus that causes crops contamination with the carcinogen aflatoxins. Although sirtuin E (SirE) is known to be a NAD-dependent histone deacetylase involved in global transcriptional regulation. Its biological functions in A. flavus are not fully understood. To explore the effects of SirE, we found that SirE was located in the nucleus and increased the level of H3K56 acetylation. The ΔsirE mutant had the most severe growth defect in the sirtuin family. The RNA-Seq revealed that sirE was crucial for secondary metabolism production as well as genetic information process and oxidation-reduction in A. flavus. Further analysis revealed that the ΔsirE mutant increased aflatoxin production. Both the sirE deletion and H3K56 mutants were highly sensitive to DNA damage and oxidative stresses, indicating that SirE was required for DNA damage and redox reaction by the H3K56 locus. Furthermore, the ΔsirE mutant displayed high sensitivity to osmotic stress and cell wall stress, but they may not be associated with the H3K56. Finally, the catalytic activity site N192 of SirE was required for regulating growth, deacetylase function and aflatoxin production. Together, SirE is essential for histone deacetylation and biological function in A. flavus.


Assuntos
Aflatoxinas , Sirtuínas , Aspergillus flavus/metabolismo , Aflatoxinas/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dano ao DNA
3.
Toxins (Basel) ; 16(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38787069

RESUMO

The fungal cell wall serves as the primary interface between fungi and their external environment, providing protection and facilitating interactions with the surroundings. Chitin is a vital structural element in fungal cell wall. Chitin deacetylase (CDA) can transform chitin into chitosan through deacetylation, providing various biological functions across fungal species. Although this modification is widespread in fungi, the biological functions of CDA enzymes in Aspergillus flavus remain largely unexplored. In this study, we aimed to investigate the biofunctions of the CDA family in A. flavus. The A. flavus genome contains six annotated putative chitin deacetylases. We constructed knockout strains targeting each member of the CDA family, including Δcda1, Δcda2, Δcda3, Δcda4, Δcda5, and Δcda6. Functional analyses revealed that the deletion of CDA family members neither significantly affects the chitin content nor exhibits the expected chitin deacetylation function in A. flavus. However, the Δcda6 strain displayed distinct phenotypic characteristics compared to the wild-type (WT), including an increased conidia count, decreased mycelium production, heightened aflatoxin production, and impaired seed colonization. Subcellular localization experiments indicated the cellular localization of CDA6 protein within the cell wall of A. flavus filaments. Moreover, our findings highlight the significance of the CBD1 and CBD2 structural domains in mediating the functional role of the CDA6 protein. Overall, we analyzed the gene functions of CDA family in A. flavus, which contribute to a deeper understanding of the mechanisms underlying aflatoxin contamination and lay the groundwork for potential biocontrol strategies targeting A. flavus.


Assuntos
Aflatoxinas , Amidoidrolases , Aspergillus flavus , Aspergillus flavus/genética , Aspergillus flavus/enzimologia , Aspergillus flavus/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Aflatoxinas/biossíntese , Aflatoxinas/metabolismo , Aflatoxinas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Quitina/metabolismo , Parede Celular/metabolismo
4.
IMA Fungus ; 12(1): 9, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33823938

RESUMO

Aspergillus flavus is a common saprophytic filamentous fungus that produces the highly toxic natural compound aflatoxin during its growth process. Synthesis of the aflatoxins, which can contaminate food crops causing huge losses to the agricultural economy, is often regulated by epigenetic modification, such as the histone acetyltransferase. In this study, we used Aspergillus flavus as an experimental model to construct the acetyltransferase gene rtt109 knockout strain (△rtt109) and its complementary strain (△rtt109·com) by homologous recombination. The growth of △rtt109 was significantly suppressed compared to the wild type (WT) strain and the △rtt109·com strain. The sclerotium of △rtt109 grew smaller, and the amount of sclerotia generated by △rtt109 was significantly reduced. The number of conidiums of △rtt109 was significantly reduced, especially on the yeast extract sucrose (YES) solid medium. The amount of aflatoxins synthesized by △rtt109 in the PDB liquid medium was significantly decreased We also found that the △rtt109 strain was extremely sensitive to DNA damage stress. Through the maize seed infection experiment, we found that the growth of △rtt109 on the surface of affected corn was largely reduced, and the amount of aerial mycelium decreased significantly, which was consistent with the results on the artificial medium. We further found that H3K9 was the acetylated target of Rtt109 in A. flavus. In conclusion, Rtt109 participated in the growth, conidium formation, sclerotia generation, aflatoxin synthesis, environmental stress response, regulation of infection of A. flavus. The results from this study of rtt109 showed data for acetylation in the regulation of life processes and provided a new thought regarding the prevention and control of A. flavus hazards.

5.
Insect Sci ; 26(2): 322-332, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28738445

RESUMO

Subterranean predatory mites are important biological control agents of pests in soil. In order to understand the population characteristics of two predatory mites, Macrocheles glaber Müller and Stratiolaelaps scimitus Womersley, we studied their development, survival and fecundity data under laboratory conditions using Coboldia fuscipes Meigen as a food source and analyzed them with the age-stage, two-sex life table. Macrocheles glaber had a significantly shorter developmental time, oviposition period, longevity and lower fecundity than those of S. scimitus. The intrinsic rate of increase (r), finite rate of increase (λ), net reproductive rate (R0 ), net predation rate (C0 ), and finite predation rate (ω) of M. glaber were significantly lower than those of S. scimitus. Both population parameters and computer simulation implied that S. scimitus is a potential powerful biocontrol agent compared to M. glaber.


Assuntos
Dípteros , Ácaros/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Comportamento Predatório , Agrocybe , Animais , Feminino , Larva , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA