Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39034269

RESUMO

Metal-organic frameworks have garnered attention as highly efficient pre-electrocatalysts for the oxygen evolution reaction (OER). Current structure-activity relationships primarily rely on the assumption that the complete dissolution of organic ligands occurs during electrocatalysis. Herein, modeling based on NiFe Prussian blue analogs (NiFe-PBAs) show that cyanide ligands leach from the matrix and subsequently oxidize to corresponding inorganic ions (ammonium and carbonate) that re-adsorb onto the surface of NiFe OOH during the OER process. Interestingly, the surface-adsorbed inorganic ions induce the OER reaction of NiFe OOH to switch from the adsorbate evolution to the lattice-oxygen-mediated mechanism, thus contributing to the high activity. In addition, this reconstructed inorganic ion layer acting as a versatile protective layer can prevent the dissolution of metal sites to maintain contact between catalytic sites and reactive ions, thus breaking the activity-stability trade-off. Consequently, our constructed NiFe-PBAs exhibit excellent durability for 1250 h with an ultralow overpotential of 253 mV at 100 mA cm-2. The scale-up NiFe-PBAs operated with a low energy consumption of ∼4.18 kWh m-3 H2 in industrial water electrolysis equipment. The economic analysis of the entire life cycle demonstrates that this green hydrogen production is priced at US$2.59/ [Formula: see text] , meeting global targets (

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA